Previous |  Up |  Next

Article

Title: On the maximal run-length function in the Lüroth expansion (English)
Author: Sun, Yu
Author: Xu, Jian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 277-291
Summary lang: English
.
Category: math
.
Summary: We obtain a metrical property on the asymptotic behaviour of the maximal run-length function in the Lüroth expansion. We also determine the Hausdorff dimension of a class of exceptional sets of points whose maximal run-length function has sub-linear growth rate. (English)
Keyword: Lüroth expansion
Keyword: run-length function
Keyword: Hausdorff dimension
MSC: 11K55
MSC: 28A80
idZBL: Zbl 06861581
idMR: MR3783599
DOI: 10.21136/CMJ.2018.0474-16
.
Date available: 2018-03-19T10:31:32Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147135
.
Reference: [1] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers.Carus Mathematical Monographs 29, Mathematical Association of America, Washington (2002). Zbl 1033.11040, MR 1917322
Reference: [2] Erdős, P., Rényi, A.: On a new law of large numbers.J. Anal. Math. 23 (1970), 103-111. Zbl 0225.60015, MR 0272026, 10.1007/BF02795493
Reference: [3] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications.Wiley & Sons, Chichester (1990). Zbl 0689.28003, MR 1102677
Reference: [4] Galambos, J.: Representations of Real Numbers by Infinite Series.Lecture Notes in Mathematics 502, Springer, Berlin (1976). Zbl 0322.10002, MR 0568141, 10.1007/BFb0081642
Reference: [5] Hutchinson, J. E.: Fractals and self-similarity.Indiana Univ. Math. J. 30 (1981), 713-747. Zbl 0598.28011, MR 0625600, 10.1512/iumj.1981.30.30055
Reference: [6] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Infinite Ergodic Theory of Numbers.De Gruyter Graduate, De Gruyter, Berlin (2016). Zbl 1362.37003, MR 3585883, 10.1515/9783110439427
Reference: [7] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem.J. Math. Anal. Appl. 436 (2016), 355-365. Zbl 06536909, MR 3440098, 10.1016/j.jmaa.2015.12.001
Reference: [8] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem revisited.Monatsh. Math. 182 (2017), 865-875. Zbl 06704122, MR 3624949, 10.1007/s00605-016-0977-y
Reference: [9] Lüroth, J.: Über eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe.Math. Ann. 21 (1883), 411-423 German \99999JFM99999 15.0187.01. MR 1510205, 10.1007/BF01443883
Reference: [10] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length.Monatsh. Math. 151 (2007), 287-292. Zbl 1170.28001, MR 2329089, 10.1007/s00605-007-0455-7
Reference: [11] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure.Proc. Camb. Philos. Soc. 42 (1946), 15-23. Zbl 0063.04088, MR 0014397, 10.1017/s0305004100022684
Reference: [12] Révész, P.: Random Walk in Random and Non-random Environments.World Scientific, Hackensack (2005). Zbl 1090.60001, MR 2168855, 10.1142/5847
Reference: [13] Sun, Y., Xu, J.: A remark on exceptional sets in Erdős-Rényi limit theorem.Monatsh. Math. 184 (2017), 291-296. Zbl 06788682, MR 3696113, 10.1007/s00605-016-0974-1
Reference: [14] Wang, B. W., Wu, J.: On the maximal run-length function in continued fractions.Annales Univ. Sci. Budapest., Sect. Comp. 34 (2011), 247-268.
Reference: [15] Zou, R.: Hausdorff dimension of the maximal run-length in dyadic expansion.Czech. Math. J. 61 (2011), 881-888. Zbl 1249.11085, MR 2886243, 10.1007/s10587-011-0055-5
.

Files

Files Size Format View
CzechMathJ_68-2018-1_18.pdf 314.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo