Previous |  Up |  Next

Article

Title: Positive periodic solutions of a neutral functional differential equation with multiple delays (English)
Author: Li, Yongxiang
Author: Liu, Ailan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 1
Year: 2018
Pages: 11-24
Summary lang: English
.
Category: math
.
Summary: This paper deals with the existence of positive $\omega $-periodic solutions for the neutral functional differential equation with multiple delays $$(u(t)-cu(t-\delta ))'+a(t) u(t)=f(t, u(t-\tau _1), \cdots , u(t-\tau _n)).$$ The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of $c$ and the coefficient function $a(t)$, and the nonlinearity $f(t, x_1,\cdots , x_n)$. Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones. (English)
Keyword: neutral delay differential equation
Keyword: positive periodic solution
Keyword: cone
Keyword: fixed point index
MSC: 34K13
MSC: 34K40
MSC: 47H11
idZBL: Zbl 06861589
idMR: MR3778047
DOI: 10.21136/MB.2017.0050-16
.
Date available: 2018-03-19T10:32:52Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147139
.
Reference: [1] Deimling, K.: Nonlinear Functional Analysis.Springer, Berlin (1985). Zbl 0559.47040, MR 0787404, 10.1007/978-3-662-00547-7
Reference: [2] Freedman, H. I., Wu, J.: Periodic solutions of single-species models with periodic delay.SIAM J. Math. Anal. 23 (1992), 689-701. Zbl 0764.92016, MR 1158828, 10.1137/0523035
Reference: [3] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889
Reference: [4] Hale, J. K.: Theory of Functional Differential Equations.Applied Mathematical Sciences. Vol. 3. Springer, New York (1977). Zbl 0352.34001, MR 0508721, 10.1007/978-1-4612-9892-2
Reference: [5] Hatvani, L., Krisztin, T.: On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations.J. Differ. Equations 97 (1992), 1-15. Zbl 0758.34054, MR 1161308, 10.1016/0022-0396(92)90080-7
Reference: [6] Kang, S., Zhang, G.: Existence of nontrivial periodic solutions for first order functional differential equations.Appl. Math. Lett. 18 (2005), 101-107. Zbl 1075.34064, MR 2121560, 10.1016/j.aml.2004.07.018
Reference: [7] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics.Mathematics in Science and Engineering 191. Academic Press, Boston (1993). Zbl 0777.34002, MR 1218880
Reference: [8] Luo, Y., Wang, W., Shen, J.: Existence of positive periodic solutions for two kinds of neutral functional differential equations.Appl. Math. Lett. 21 (2008), 581-587. Zbl 1149.34040, MR 2412382, 10.1016/j.aml.2007.07.009
Reference: [9] Mallet-Paret, J., Nussbaum, R. D.: Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation.Ann. Math. Pure Appl. (4) 145 (1986), 33-128. Zbl 0617.34071, MR 0886709, 10.1007/BF01790539
Reference: [10] Serra, E.: Periodic solutions for some nonlinear differential-equations of neutral type.Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. Zbl 0735.34066, MR 1118073, 10.1016/0362-546X(91)90217-O
Reference: [11] Wan, A., Jiang, D.: Existence of positive periodic solutions for functional differential equations.Kyushu J. Math. 56 (2002), 193-202. Zbl 1012.34068, MR 1898353, 10.2206/kyushujm.56.193
Reference: [12] Wan, A., Jiang, D., Xu, X.: A new existence theory for positive periodic solutions to functional differential equations.Comput. Math. Appl. 47 (2004), 1257-1262. Zbl 1073.34082, MR 2070981, 10.1016/S0898-1221(04)90120-4
.

Files

Files Size Format View
MathBohem_143-2018-1_2.pdf 283.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo