Previous |  Up |  Next

Article

Title: On oscillatory nonlinear fourth-order difference equations with delays (English)
Author: Tripathy, Arun K.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 1
Year: 2018
Pages: 25-40
Summary lang: English
.
Category: math
.
Summary: In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form \begin {equation*} \Delta ^{2}(r(n)\Delta ^{2}(y(n)+p(n)y(n-m)))+ q(n)G(y(n-k))=0 \end {equation*} is studied under the assumption \begin {equation*} \sum _{n=0}^{\infty }\frac {n}{r(n)}< \infty . \end {equation*} New oscillation criteria have been established which generalize some of the existing results in the literature. (English)
Keyword: oscillation
Keyword: nonlinear
Keyword: delay
Keyword: neutral functional difference equation
MSC: 39A10
MSC: 39A12
idZBL: Zbl 06861590
idMR: MR3778048
DOI: 10.21136/MB.2017.0018-16
.
Date available: 2018-03-19T10:33:27Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147140
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications.Pure and Applied Mathematics 228. Marcel Dekker, New York (2000). Zbl 0952.39001, MR 1740241
Reference: [2] Agarwal, R. P., Grace, S. R., Wong, P. J. Y.: Oscillation of fourth order nonlinear difference equations.Int. J. Difference Equ. 2 (2007), 123-137. MR 2493593
Reference: [3] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications.Birkhäuser, Basel (2001). Zbl 0978.39001, MR 1843232, 10.1007/978-1-4612-0201-1
Reference: [4] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston (2003). Zbl 1025.34001, MR 1962542, 10.1007/978-0-8176-8230-9
Reference: [5] Graef, J. R., Miciano, A., Spikes, P., Sundaram, P., Thandapani, E.: Oscillatory and asymptotic behaviour of solutions of nonlinear neutral-type difference equations.J. Aust. Math. Soc., Ser. B 38 (1996), 163-171. Zbl 0890.39018, MR 1414357, 10.1017/S0334270000000552
Reference: [6] Graef, J. R., Thandapani, E.: Oscillatory and asymptotic behaviour of fourth order nonlinear delay difference equations.Fasc. Math. 31 (2001), 23-36. Zbl 1009.39007, MR 1860547
Reference: [7] Gyori, I., Ladas, G.: Oscillation Theory for Delay Differential Equations with Applications.Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). Zbl 0780.34048, MR 1168471
Reference: [8] Migda, M.: Asymptotic properties of nonoscillatory solutions of higher order neutral difference equations.Opusc. Math. 26 (2006), 507-514. Zbl 1131.39008, MR 2280277
Reference: [9] Migda, M., Migda, J.: Oscillatory and asymptotic properties of solutions of even order neutral difference equations.J. Difference Equ. Appl. 15 (2009), 1077-1084. Zbl 1194.39009, MR 2569136, 10.1080/10236190903032708
Reference: [10] Parhi, N., Tripathy, A. K.: Oscillation of a class of nonlinear neutral difference equations of higher order.J. Math. Anal. Appl. 284 (2003), 756-774. Zbl 1037.39002, MR 1998666, 10.1016/S0022-247X(03)00298-1
Reference: [11] Thandapani, E., Arockiasamy, I. M.: Oscillatory and asymptotic behaviour of fourth order nonlinear neutral delay difference equations.Indian J. Pure Appl. Math. 32 (2001), 109-123. Zbl 1004.39005, MR 1819234
Reference: [12] Thandapani, E., Sundaram, P., Graef, J. R., Miciano, A., Spikes, P.: Classification of non-oscillatory solutions of higher order neutral type difference equations.Arch. Math. (Brno) 31 (1995), 263-277. Zbl 0855.39014, MR 1390585
Reference: [13] Tripathy, A. K.: Oscillation of fourth-order nonlinear neutral difference equations II.Math. Slovaca 58 (2008), 581-604. Zbl 1199.39018, MR 2434679
Reference: [14] Tripathy, A. K.: New oscillation criteria for fourth order nonlinear neutral difference equations.Adv. Dyn. Syst. Appl 8 (2013), 387-399. MR 3162156
.

Files

Files Size Format View
MathBohem_143-2018-1_3.pdf 280.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo