Previous |  Up |  Next

Article

Title: Asynchronous sampling-based leader- following consensus in second-order multi-agent systems (English)
Author: Wang, Zhengxin
Author: Feng, Yuanzhen
Author: Zheng, Cong
Author: Lu, Yanling
Author: Pan, Lijun
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 1
Year: 2018
Pages: 61-78
Summary lang: English
.
Category: math
.
Summary: This paper studies the leader-following consensus problem of second-order multi-agent systems with directed topologies. By employing the asynchronous sampled-data protocols, sufficient conditions for leader-following consensus with both constant velocity leader and variable velocity leader are derived. Leader-following quasi-consensus can be achieved in multi-agent systems when all the agents sample the information asynchronously. Numerical simulations are provided to verify the theoretical results. (English)
Keyword: leader-following
Keyword: multi-agent systems
Keyword: consensus
Keyword: asynchronous sampling
MSC: 93C57
MSC: 93D05
idZBL: Zbl 06861614
idMR: MR3780956
DOI: 10.14736/kyb-2018-1-0061
.
Date available: 2018-03-26T16:13:40Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147151
.
Reference: [1] Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory..SIAM, Philadelphia 1994. Zbl 0816.93004, 10.1137/1.9781611970777
Reference: [2] Chen, Y., Dong, H., Lü, J., Sun, X., Liu, K.: Robust consensus of nonlinear multiagent systems with switching topology and bounded noises..IEEE Trans. Cybern. 46 (2016), 6, 1276-1285. 10.1109/tcyb.2015.2448574
Reference: [3] Ding, L., Zheng, W. X.: Consensus tracking in heterogeneous nonlinear multi-agent networks with asynchronous sampled-data communication..Syst. Control Lett. 96 (2016), 151-157. MR 3547668, 10.1016/j.sysconle.2016.08.001
Reference: [4] Fridman, E., Dambrine, M.: Control under quantization, saturation and delay: An LMI approach..Automatica 45 (2009), 10, 2258-2264. Zbl 1179.93089, MR 2890785, 10.1016/j.automatica.2009.05.020
Reference: [5] Gao, Y., Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology..IEEE Trans. Automat. Contr. 56 (2011), 5, 1226-1231. 10.1109/tac.2011.2112472
Reference: [6] Gao, Y., Zuo, M., Jiang, T., Du, J., Ma, J.: Asynchronous consensus of multiple second-order agents with partial state information..Int. J. Syst. Sci. 44 (2013), 5, 966-977. MR 3036586, 10.1080/00207721.2011.651171
Reference: [7] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time-Delay Systems..Birkhäuser, Boston 2003. MR 3075002, 10.1007/978-1-4612-0039-0
Reference: [8] Guan, Z.-H., Sun, F.-L., Wang, Y.-W., Li, T.: Finite-time consensus for leader-following second-order multi-agent networks..IEEE Trans. Circuits Syst. I: Regul. Pap. 59 (2012), 11, 2646-2654. MR 2996242, 10.1109/tcsi.2012.2190676
Reference: [9] He, W., Chen, G., Han, Q.-L., Du, W., Cao, J., Qian, F.: Multi-agent systems on multilayer networks: Synchronization analysis and network design..IEEE Trans. Syst. Man Cybernet.: Syst. 47 (2017), 7, 1655-1667. 10.1109/tsmc.2017.2659759
Reference: [10] He, W., Qian, F., Lam, J., Chen, G., Han, Q.-L., Kurths, J.: Quasi-Synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design..Automatica 62 (2015), 249-262. 10.1016/j.automatica.2015.09.028
Reference: [11] He, W., Zhang, B., Han, Q.-L., Qian, F., Kurths, J., Cao, J.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling..IEEE Trans. Cybern. 47 (2017), 2, 327-338.
Reference: [12] Hu, G.: Robust consensus tracking of a class of second-order multi-agent dynamic systems..Syst. Control Lett. 61 (2012), 1, 134-142. 10.1016/j.sysconle.2011.10.004
Reference: [13] Huang, N., Duan, Z., Chen, G. R.: Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data..Automatica 63 (2016), 148-155. MR 3429980, 10.1109/chicc.2016.7554607
Reference: [14] Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks..Automatica 44 (2008), 3, 846-850. MR 2527101, 10.1016/j.automatica.2007.07.004
Reference: [15] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology..Automatica 42 (2006), 7, 1177-1182. Zbl 1117.93300, MR 2230987, 10.1016/j.automatica.2006.02.013
Reference: [16] Horn, R. A., Johnson, C. R.: Matrix Analysis. Secod edition..Cambridge University Press, New York 2013.
Reference: [17] Li, Z., Ren, W., Liu, X., Xie, L.: Distributed consensus of linear multi-agent systems with adaptive dynamic protocols..Automatica 49 (2013), 1986-1995. MR 3063054, 10.1016/j.automatica.2013.03.015
Reference: [18] Liu, X., Ho, D. W., Cao, J., Xu, W.: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances..IEEE Trans. Neural Netw. Learn Syst. 28 (2017), 11, 2826-2830. 10.1109/tnnls.2016.2599199
Reference: [19] Liu, Y., Zhao, Y., Shi, Z.: Sampled-data based consensus for multiple harmonic oscillators with directed switching topology..J. Franklin Inst. 354 (2017), 3519-3539. MR 3634544, 10.1016/j.jfranklin.2017.02.025
Reference: [20] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Contr. 49 (2004), 9, 1520-1533. 10.1109/tac.2004.834113
Reference: [21] Park, P., Ko, J. W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays..Automatica 47 (2011), 1, 235-238. 10.1016/j.automatica.2010.10.014
Reference: [22] Peng, K., Yang, Y.: Leader-following consensus problem with a varying-velocity leader and time-varying delays..Physica A 388 (2009), 2-3, 193-208. 10.1016/j.physa.2008.10.009
Reference: [23] Ren, W., Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies..IEEE Trans. Automat. Contr. 50 (2005), 5, 655-661. MR 2141568, 10.1109/tac.2005.846556
Reference: [24] Ren, W.: On consensus algorithms for double-integrator dynamics..IEEE Trans. Automat. Contr. 53 (2008), 6, 1503-1509. MR 2451239, 10.1109/tac.2008.924961
Reference: [25] Seo, J. H., Shim, H., Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach..Automatica 45 (2009), 11, 2659-2664. MR 2889327, 10.1016/j.automatica.2009.07.022
Reference: [26] Shen, B., Wang, Z., Liu, X.: Sampled-data synchronization control of dynamical networks with stochastic sampling..IEEE Trans. Automat. Contr. 57 (2012), 10, 2644-2650. MR 2991668, 10.1109/tac.2012.2190179
Reference: [27] Song, Q., Cao, J., Yu, W.: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control..Syst. Control Lett. 59 (2010), 9, 553-562. MR 2761212, 10.1016/j.sysconle.2010.06.016
Reference: [28] Wen, G., Duan, Z., Yu, W., Chen, G.: Consensus in multi-agent systems with communication constraints..Int. J. Robust Nonl. Contr. 22 (2012), 2, 170-182. MR 2875190, 10.1002/rnc.1687
Reference: [29] Wang, Z., Cao, J.: Quasi-consensus of second-order leader-following multi-agent systems..IET Contr. Theory Appl. 6 (2012), 4, 545-551. 10.1049/iet-cta.2011.0198
Reference: [30] Wang, Z., Jiang, G., Yu, W., He, W., Cao, J., Xiao, M.: Synchronization of coupled heterogeneous complex networks..J. Franklin Inst. 354 (2017), 10, 4102-4125. 10.1016/j.jfranklin.2017.03.006
Reference: [31] Xiao, F., Wang, L.: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays..IEEE Trans. Automat. Contr. 53 (2008), 8, 1804-1816. 10.1109/tac.2008.929381
Reference: [32] Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems..Automatica 46 (2010), 8, 1089-1095. MR 2877192, 10.1016/j.automatica.2010.03.006
Reference: [33] Yu, W., Chen, G., Cao, M., Kurths, J.: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics..IEEE Trans. Syst. Man Cybern. B: Cybern. 40 (2010), 3, 881-891. 10.1109/tsmcb.2009.2031624
Reference: [34] Yu, W., Chen, G., Cao, M., Ren, W.: Delay-induced consensus and quasi-consensus in multi-agent dynamical systems..IEEE Trans. Circuits Syst. I: Regul. Pap. 60 (2013), 10, 2679-2687. MR 3119472, 10.1109/tcsi.2013.2244357
Reference: [35] Yu, W., Zheng, W. X., Chen, G., Ren, W., Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data..Automatica 47 (2011), 7, 1496-1503. 10.1016/j.automatica.2011.02.027
Reference: [36] Zhan, J., Li, X.: Asynchronous consensus of multiple double-integrator agents with arbitrary sampling intervals and communication delays..IEEE Trans. Circuits Syst. I: Regul. Pap. 62 (2015), 9, 2301-2311. 10.1109/tcsi.2015.2451792
Reference: [37] Zhu, W., Cheng, D.: Leader-following consensus of second-order agents with multiple time-varying delays..Automatica 46 (2010), 12, 1994-1999. MR 2878222, 10.1016/j.automatica.2010.08.003
.

Files

Files Size Format View
Kybernetika_54-2018-1_5.pdf 1.023Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo