Previous |  Up |  Next


industrial robot system; system identification; instrumental variable method; parameter estimation; Kalman filter; fixed interval smoothing
This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method that is more robust to deficiencies in such a priori knowledge and exploits an optimal recursive algorithm based on a simple integrated random walk model and a Kalman filter with associated fixed interval smoothing. The resultant IDIM-IV instrumental variable method, using this approach to signal generation, is evaluated by its application to an industrial robot arm and comparison with previously proposed methods.
[1] Bélanger, P .R., Dobrovolny, P., Helmy, A., Zhang, X.: Estimation of angular velocity and acceleration from shaft-encoder measurements. Int. J. Robotics Research 17 (1998), 1225-1233. DOI 10.1177/027836499801701107
[2] Brunot, M., Janot, A., Carrillo, F.: State Space Estimation Method for the Identification of an Industrial Robot Arm. In: Proc. IFAC World Congress 50 (2017) 1, pp. 9815-9820.
[3] Brunot, M., Janot, A., Carrillo, F., Garnier, H., Vandanjon, P.-O., Gautier, M.: Physical parameter identification of a one-degree-of-freedom electromechanical system operating in closed loop. In: Proc. 17th IFAC Symposium on System Identification, 2015, pp. 823-828. DOI 10.1016/j.ifacol.2015.12.231
[4] Coca, D., Billings, S. A.: A direct approach to identification of nonlinear differential models from discrete data. Mech. Systems Signal Process. 13(5), (1999), 739-755. DOI 10.1006/mssp.1999.1230
[5] Dridi, M., Scorletti, G., Smaoui, M., Tournier, D.: From theoretical differentiation methods to low-cost digital implementation. In: IEEE International Symposium on Industrial Electronics 2010, pp. 184-189. DOI 10.1109/isie.2010.5637595
[6] Durbin, J., Koopman, S. J.: Time Series Analysis by State Space Methods. Oxford University Press, 2012. DOI 10.1093/acprof:oso/9780199641178.001.0001 | MR 3014996
[7] Garnier, H., Gilson, M., Young, P. C., Huselstein, E.: An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control Engrg. Practice 15 (2007), 471-486. DOI 10.1016/j.conengprac.2006.09.004
[8] Garnier, H., Mensler, M., Richard, A.: Continuous-time model identification from sampled data: implementation issues and performance evaluation. Int. J. Control, 76 (2003), 1337-1357. DOI 10.1080/0020717031000149636 | MR 1992923
[9] Gautier, M.: Dynamic identification of robots with power model. In: Proc. IEEE International Conference on Robotics and Automation 3 (1997), 1922-1927. DOI 10.1109/robot.1997.619069
[10] Gautier, M., Janot, A., Vandanjon, P.-O.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Trans. Control Systems Technol. 21 (2013), 428-444. DOI 10.1109/tcst.2012.2185697
[11] Gautier, M., Khalil, W.: Exciting trajectories for the identification of base inertial parameters of robots. Int. J. Robotics Research 11 (1992), 362-375. DOI 10.1177/027836499201100408
[12] Gilson, M., Garnier, H., Young, P. C., Hof, P. M. J. Van den: An instrumental variable approach for rigid industrial robots identification. IET Control Theory Appl. 5 (2011), 1147-1154. DOI 10.1049/iet-cta.2009.0476 | MR 2850670
[13] Janot, A., Vandanjon, P.-O., Gautier, M.: An instrumental variable approach for rigid industrial robots identification. Control Engrg. Practice 25 (2014), 85-101. DOI 10.1016/j.conengprac.2013.12.009
[14] Janot, A., Vandanjon, P.-O., Gautier, M.: A generic instrumental variable approach for industrial robot identification. IEEE Trans. Control Systems Technol. 22 (2014), 132-145. DOI 10.1109/tcst.2013.2246163
[15] Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Butterworth-Heinemann, 2004. MR 2459283
[16] Mahata, K., Garnier, H.: Identification of continuous-time errors-in-variables models. Automatica 42 (2006), 1477-1490. DOI 10.1016/j.automatica.2006.04.012 | MR 2246837
[17] Marcassus, N., Vandanjon, P.-O., Janot, A., Gautier, M.: Minimal resolution needed for an accurate parametric identification-application to an industrial robot arm. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems 2007, pp. 2455-2460. DOI 10.1109/iros.2007.4399476
[18] Norton, J. P.: Optimal smoothing in the identification of linear time-varying systems. In: Proc. of the Institution of Electrical Engineers 122 (1975), pp. 663-668. DOI 10.1049/piee.1975.0183
[19] Rao, G. P., Unbehauen, H.: Identification of continuous-time systems. IEE Proc. Control Theory Appl. 153 (2006), 185-220. DOI 10.1049/ip-cta:20045250
[20] Söderström, T., Stoica, P.: Instrumental Variable Methods for System Identification. Springer, 1983. DOI 10.1049/ip-cta:20045250 | MR 0719197
[21] Favergues, Stäubli: Arm - TX Series 40 Family. Stäubli, 2015.
[22] Wooldridge, J. M.: Introductory Econometrics: A Modern Approach. Fourth edition. South-Western, 2008.
[23] Young, P. C.: An instrumental variable method for real-time identification of a noisy process. Automatica, 6 (1970), 271-287. DOI 10.1016/0005-1098(70)90098-1
[24] Young, P. C.: Recursive Estimation and Time-Series Analysis: An Introduction for The Student and Practitioner. Second edition. Springer Science and Business Media, 2012. MR 3024956
[25] Young, P. C.: Refined instrumental variable estimation: Maximum likelihood optimization of a unified {Box-Jenkins} model. Automatica 52, (2015), 35-46. DOI 10.1016/j.automatica.2014.10.126 | MR 3310811
[26] Young, P. C., Foster, M., Lees, M.: A Direct Approach to the Identification and Estimation of Continuous-Time Systems From Discrete-Time Data Based on Fixed Interval Smoothing. In: Proc. 12th IFAC World Congress 10 (1993), pp. 27-30. DOI 10.1016/s1474-6670(17)49207-x
[27] Young, P. C., Jakeman, A. J.: Refined instrumental variable methods of time-series analysis: Parts I, II and III. Int. J. Control 29, 1-30; 30, 621-644, 31, (1979-1980), 741-764. DOI 10.1080/00207178008961080
Partner of
EuDML logo