Title:
|
Some results on the co-intersection graph of submodules of a module (English) |
Author:
|
Mahdavi, Lotf Ali |
Author:
|
Talebi, Yahya |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
15-24 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a ring with identity and $M$ be a unitary left $R$-module. The co-intersection graph of proper submodules of $M$, denoted by $\Omega(M)$, is an undirected simple graph whose vertex set $V(\Omega)$ is a set of all nontrivial submodules of $M$ and two distinct vertices $N$ and $K$ are adjacent if and only if $N+K\neq M$. We study the connectivity, the core and the clique number of $\Omega(M)$. Also, we provide some conditions on the module $M$, under which the clique number of $\Omega(M)$ is infinite and $\Omega(M)$ is a planar graph. Moreover, we give several examples for which $n$ the graph $\Omega(\mathbb{Z}_{n})$ is connected, bipartite and planar. (English) |
Keyword:
|
co-intersection graph |
Keyword:
|
core |
Keyword:
|
clique number |
Keyword:
|
planarity |
MSC:
|
05C15 |
MSC:
|
05C25 |
MSC:
|
05C69 |
MSC:
|
16D10 |
idZBL:
|
Zbl 06890393 |
idMR:
|
MR3783805 |
DOI:
|
10.14712/1213-7243.2015.230 |
. |
Date available:
|
2018-04-17T13:39:45Z |
Last updated:
|
2020-04-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147175 |
. |
Reference:
|
[1] Akbari S., Nikandish R., Nikmehr M. J.: Some results on the intersection graphs of ideals of rings.J. Algebra Appl. 12 (2013), no. 4, 1250200, 13 pp. Zbl 1264.05056, 10.1142/S0219498812502003 |
Reference:
|
[2] Akbari S., Tavallaee A., Khalashi Ghezelahmad S.: Intersection graph of submodule of a module.J. Algebra Appl. 11 (2012), no. 1, 1250019, 8 pp. 10.1142/S0219498811005452 |
Reference:
|
[3] Akbari S., Tavallaee A., Khalashi Ghezelahmad S.: On the complement of the intersection graph of submodules of a module.J. Algebra Appl. 14 (2015), 1550116, 11 pp. 10.1142/S0219498815501169 |
Reference:
|
[4] Akbari S., Tavallaee A., Khalashi Ghezelahmad S.: Some results on the intersection graph of submodules of a module.Math. Slovaca 67 (2017), no. 2, 297–304. 10.1515/ms-2016-0267 |
Reference:
|
[5] Anderson F. W., Fuller K. R.: Rings and Categories of Modules.Springer, New York, 1992. Zbl 0765.16001 |
Reference:
|
[6] Bondy J. A., Murty U. S. R.: Graph Theory.Graduate Texts in Mathematics, 244, Springer, New York, 2008. Zbl 1134.05001 |
Reference:
|
[7] Bosak J.: The graphs of semigroups.in Theory of Graphs and Its Application, Academic Press, New York, 1964, pp. 119–125. Zbl 0161.20901 |
Reference:
|
[8] Chakrabarty I., Gosh S., Mukherjee T. K., Sen M. K.: Intersection graphs of ideals of rings.Discrete Math. 309 (2009), 5381–5392. 10.1016/j.disc.2008.11.034 |
Reference:
|
[9] Clark J., Lomp C., Vanaja N., Wisbauer R.: Lifting Modules. Supplements and Projectivity in Module Theory.Frontiers in Mathematics, Birkhäuser, Basel, 2006. |
Reference:
|
[10] Cohn P. M.: Introduction to Ring Theory.Springer Undergraduate Mathematics Series, Springer, London, 2000. |
Reference:
|
[11] Csakany B., Pollak G.: The graph of subgroups of a finite group.Czechoslovak Math. J. 19 (1969), 241–247. |
Reference:
|
[12] Jafari S., Jafari Rad N.: Planarity of intersection graphs of ideals of rings.Int. Electron. J. Algebra 8 (2010), 161–166. |
Reference:
|
[13] Kayacan S., Yaraneri E.: Finite groups whose intersection graphs are planar.J. Korean Math. Soc. 52 (2015), no. 1, 81–96. 10.4134/JKMS.2015.52.1.081 |
Reference:
|
[14] Laison J. D., Qing Y.: Subspace intersection graphs.Discrete Math. 310 (2010), 3413–3416. 10.1016/j.disc.2010.06.042 |
Reference:
|
[15] Mahdavi L. A., Talebi Y.: Co-intersection graph of submodules of a module.Algebra Discrete Math. 21 (2016), no. 1, 128–143. |
Reference:
|
[16] Northcott D. G.: Lessons on Rings, Modules and Multiplicaties.Cambridge University Press, Cambridge, 1968. |
Reference:
|
[17] Shen R.: Intersection graphs of subgroups of finite groups.Czechoslovak Math. J. 60(4) (2010), 945–950. 10.1007/s10587-010-0085-4 |
Reference:
|
[18] Talebi A. A.: A kind of intersection graphs on ideals of rings.J. Mathematics Statistics 8 (2012), no. 1, 82–84. 10.3844/jmssp.2012.82.84 |
Reference:
|
[19] Yaraneri E.: Intersection graph of a module.J. Algebra Appl. 12 (2013), no. 5, 1250218, 30 pp. 10.1142/S0219498812502180 |
Reference:
|
[20] Zelinka B.: Intersection graphs of finite abelian groups.Czechoslovak Math. J. 25(2) (1975), 171–174. |
. |