Previous |  Up |  Next

Article

Title: Some results on the co-intersection graph of submodules of a module (English)
Author: Mahdavi, Lotf Ali
Author: Talebi, Yahya
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 1
Year: 2018
Pages: 15-24
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring with identity and $M$ be a unitary left $R$-module. The co-intersection graph of proper submodules of $M$, denoted by $\Omega(M)$, is an undirected simple graph whose vertex set $V(\Omega)$ is a set of all nontrivial submodules of $M$ and two distinct vertices $N$ and $K$ are adjacent if and only if $N+K\neq M$. We study the connectivity, the core and the clique number of $\Omega(M)$. Also, we provide some conditions on the module $M$, under which the clique number of $\Omega(M)$ is infinite and $\Omega(M)$ is a planar graph. Moreover, we give several examples for which $n$ the graph $\Omega(\mathbb{Z}_{n})$ is connected, bipartite and planar. (English)
Keyword: co-intersection graph
Keyword: core
Keyword: clique number
Keyword: planarity
MSC: 05C15
MSC: 05C25
MSC: 05C69
MSC: 16D10
idZBL: Zbl 06890393
idMR: MR3783805
DOI: 10.14712/1213-7243.2015.230
.
Date available: 2018-04-17T13:39:45Z
Last updated: 2020-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147175
.
Reference: [1] Akbari S., Nikandish R., Nikmehr M. J.: Some results on the intersection graphs of ideals of rings.J. Algebra Appl. 12 (2013), no. 4, 1250200, 13 pp. Zbl 1264.05056, 10.1142/S0219498812502003
Reference: [2] Akbari S., Tavallaee A., Khalashi Ghezelahmad S.: Intersection graph of submodule of a module.J. Algebra Appl. 11 (2012), no. 1, 1250019, 8 pp. 10.1142/S0219498811005452
Reference: [3] Akbari S., Tavallaee A., Khalashi Ghezelahmad S.: On the complement of the intersection graph of submodules of a module.J. Algebra Appl. 14 (2015), 1550116, 11 pp. 10.1142/S0219498815501169
Reference: [4] Akbari S., Tavallaee A., Khalashi Ghezelahmad S.: Some results on the intersection graph of submodules of a module.Math. Slovaca 67 (2017), no. 2, 297–304. 10.1515/ms-2016-0267
Reference: [5] Anderson F. W., Fuller K. R.: Rings and Categories of Modules.Springer, New York, 1992. Zbl 0765.16001
Reference: [6] Bondy J. A., Murty U. S. R.: Graph Theory.Graduate Texts in Mathematics, 244, Springer, New York, 2008. Zbl 1134.05001
Reference: [7] Bosak J.: The graphs of semigroups.in Theory of Graphs and Its Application, Academic Press, New York, 1964, pp. 119–125. Zbl 0161.20901
Reference: [8] Chakrabarty I., Gosh S., Mukherjee T. K., Sen M. K.: Intersection graphs of ideals of rings.Discrete Math. 309 (2009), 5381–5392. 10.1016/j.disc.2008.11.034
Reference: [9] Clark J., Lomp C., Vanaja N., Wisbauer R.: Lifting Modules. Supplements and Projectivity in Module Theory.Frontiers in Mathematics, Birkhäuser, Basel, 2006.
Reference: [10] Cohn P. M.: Introduction to Ring Theory.Springer Undergraduate Mathematics Series, Springer, London, 2000.
Reference: [11] Csakany B., Pollak G.: The graph of subgroups of a finite group.Czechoslovak Math. J. 19 (1969), 241–247.
Reference: [12] Jafari S., Jafari Rad N.: Planarity of intersection graphs of ideals of rings.Int. Electron. J. Algebra 8 (2010), 161–166.
Reference: [13] Kayacan S., Yaraneri E.: Finite groups whose intersection graphs are planar.J. Korean Math. Soc. 52 (2015), no. 1, 81–96. 10.4134/JKMS.2015.52.1.081
Reference: [14] Laison J. D., Qing Y.: Subspace intersection graphs.Discrete Math. 310 (2010), 3413–3416. 10.1016/j.disc.2010.06.042
Reference: [15] Mahdavi L. A., Talebi Y.: Co-intersection graph of submodules of a module.Algebra Discrete Math. 21 (2016), no. 1, 128–143.
Reference: [16] Northcott D. G.: Lessons on Rings, Modules and Multiplicaties.Cambridge University Press, Cambridge, 1968.
Reference: [17] Shen R.: Intersection graphs of subgroups of finite groups.Czechoslovak Math. J. 60(4) (2010), 945–950. 10.1007/s10587-010-0085-4
Reference: [18] Talebi A. A.: A kind of intersection graphs on ideals of rings.J. Mathematics Statistics 8 (2012), no. 1, 82–84. 10.3844/jmssp.2012.82.84
Reference: [19] Yaraneri E.: Intersection graph of a module.J. Algebra Appl. 12 (2013), no. 5, 1250218, 30 pp. 10.1142/S0219498812502180
Reference: [20] Zelinka B.: Intersection graphs of finite abelian groups.Czechoslovak Math. J. 25(2) (1975), 171–174.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-1_2.pdf 335.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo