Previous |  Up |  Next

Article

Title: CF-modules over commutative rings (English)
Author: Najim, Ahmed
Author: Charkani, Mohammed Elhassani
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 1
Year: 2018
Pages: 25-34
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over $R$ is a CF-module. When $R$ is local, we characterize the CF-modules over $R$ whose tensor product is a CF-module. (English)
Keyword: CF-couple
Keyword: CF-module
Keyword: commutative ring
Keyword: local ring
MSC: 13C05
idZBL: Zbl 06890394
idMR: MR3783806
DOI: 10.14712/1213-7243.2015.236
.
Date available: 2018-04-17T13:41:12Z
Last updated: 2020-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147176
.
Reference: [1] Auslander M., Buchsbaum D. A.: Invariant factors and two criteria for projectivity of modules.Trans. Amer. Math. Soc. 104 (1962), 516–522. 10.1090/S0002-9947-1962-0157987-5
Reference: [2] Behboodi M., Ghorbani A., Moradzadeh-Dehkordi A.: Commutative Noetherian local rings whose ideals are direct sums of cyclic modules.J. Algebra 345 (2011), 257–265. 10.1016/j.jalgebra.2011.08.017
Reference: [3] Brown William C.: Matrices over Commutative Rings.Marcel Decker Inc., New York, 1993.
Reference: [4] Charkani M. E., Akharraz I.: Fitting ideals and cyclic decomposition of finitely generated modules.Arab. J. Sci. Eng. Sect. C (2000), 151–156.
Reference: [5] Cohen I. S., Kaplansky I.: Rings for which every module is a direct sum of cyclic modules.Math. Z. 54 (1951), 97–101. 10.1007/BF01179851
Reference: [6] Griffith P.: On the decomposition of modules and generalized left uniserial rings.Math. Ann. 184 (1970), 300–308. 10.1007/BF01350858
Reference: [7] Klingler L., Levy L. S.: Representation type of commutative Noetherian rings. I. Local wildness.Pacific J. Math. 200 (2001), no. 2, 345–386. 10.2140/pjm.2001.200.345
Reference: [8] Köthe G.: Verallgemeinerte abelsche gruppen mit hyperkomplexen operatorenring.Math. Z. 39 (1935), 31–44. 10.1007/BF01201343
Reference: [9] Levy L. S.: Modules over Dedekind-like rings.J. Algebra 93 (1985), 1–116. 10.1016/0021-8693(85)90176-0
Reference: [10] Shores T. S., Wiegand R.: Decomposition of modules and matrices.Bull. Amer. Math. Soc. 79 (1973), 1277–1280. 10.1090/S0002-9904-1973-13414-7
Reference: [11] Shores T. S., Wiegand R.: Rings whose finitely generated modules are direct sums of cyclics.J. Algebra 32 (1974), 152–172. 10.1016/0021-8693(74)90178-1
Reference: [12] Steinitz E.: Rechteckige Systeme und Moduln in Algebraischen Zahlköppern I.Math. Ann. 71 (1911), 328–354 (German). 10.1007/BF01456849
Reference: [13] Steinitz E.: Rechteckige Systeme und Moduln in Algebraischen Zahlköppern II.Math. Ann. 72 (1912), 297–345 (German). 10.1007/BF01456721
Reference: [14] Warfield R. B. Jr.: A Krull-Schmidt theorem for infinite sums of modules.Proc. Amer. Math. Soc. 22 (1969), 460–465. 10.1090/S0002-9939-1969-0242886-2
Reference: [15] Warfield R. B. Jr.: Rings whose modules have nice decompositions.Math. Z. 125 (1972), 187–192. 10.1007/BF01110928
Reference: [16] Weintraub S. H.: Representation Theory of Finite Groups: Algebras and Arithmetic.Graduate Studies in Mathematics, 59, American Mathematical Society, Providence, RI, 2003. 10.1090/gsm/059
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-1_3.pdf 261.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo