Previous |  Up |  Next


degenerate quasilinear elliptic equations; weighted Sobolev spaces
The main result establishes that a weak solution of degenerate quasilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate quasilinear elliptic equations.
[1] Bresch D., Lemoine J., Guíllen-Gonzalez F.: A note on a degenerate elliptic equation with applications for lakes and seas. Electron. J. Differential Equations, vol. 2004 (2004), no. 42, 1–13.
[2] Cavalheiro A. C.: An approximation theorem for solutions of degenerate elliptic equations. Proc. Edinb. Math. Soc. 45 (2002), 363–389; doi: 10.1017/S0013091500000079. DOI 10.1017/S0013091500000079
[3] Cavalheiro A. C.: Existence of solution for Dirichlet problem of some degenerate quasilinear elliptic equations. J. Adv. Res. Appl. Math. 6 (2014), no. 4, 46–58; doi: 10.5373/jaram.1978.022014. DOI 10.5373/jaram.1978.022014
[4] Colombo M.: Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems. Publications of the Scuolla Normale Superiore Pisa, 22, Pisa, 2017.
[5] Fabes E., Kenig C., Serapioni R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982), 77–116; doi:10.1080/03605308208820218. DOI 10.1080/03605308208820218
[6] Fernandes J. C., Franchi B.: Existence and properties of the Green function for a class of degenerate parabolic equations. Rev. Mat. Iberoamericana 12 (1996), 491–525. DOI 10.4171/RMI/206
[7] Garcia-Cuerva J., Rubio de Francia J. L.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, 116, North Holland Publishing Co., Amsterdam, 1985.
[8] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1993.
[9] Kufner A.: Weighted Sobolev Spaces. John Wiley & Sons, New York, 1985. Zbl 0862.46017
[10] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI 10.1090/S0002-9947-1972-0293384-6
[11] Torchinsky A.: Real-Variable Methods in Harmonic Analysis. Academic Press, San Diego, 1986. Zbl 1097.42002
[12] Turesson B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Math., 1736, Springer, Berlin, 2000. DOI 10.1007/BFb0103912
[13] Xu X.: A local partial regularity theorem for weak solutions of degenerate elliptic equations and its applications to the thermistor problem. Differential Integral Equations 12 (1999), no. 1, 83–100.
[14] Zeidler E.: Nonlinear Functional Analysis and its Applications, II/B. Springer, New York, 1990.
Partner of
EuDML logo