Previous |  Up |  Next

Article

Title: An existence and approximation theorem for solutions of degenerate quasilinear elliptic equations (English)
Author: Cavalheiro, Albo Carlos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 1
Year: 2018
Pages: 65-80
Summary lang: English
.
Category: math
.
Summary: The main result establishes that a weak solution of degenerate quasilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate quasilinear elliptic equations. (English)
Keyword: degenerate quasilinear elliptic equations
Keyword: weighted Sobolev spaces
MSC: 35D30
MSC: 35J62
MSC: 35J70
idZBL: Zbl 06890397
idMR: MR3783809
DOI: 10.14712/1213-7243.2015.232
.
Date available: 2018-04-17T13:46:20Z
Last updated: 2020-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147179
.
Reference: [1] Bresch D., Lemoine J., Guíllen-Gonzalez F.: A note on a degenerate elliptic equation with applications for lakes and seas.Electron. J. Differential Equations, vol. 2004 (2004), no. 42, 1–13.
Reference: [2] Cavalheiro A. C.: An approximation theorem for solutions of degenerate elliptic equations.Proc. Edinb. Math. Soc. 45 (2002), 363–389; doi: 10.1017/S0013091500000079. 10.1017/S0013091500000079
Reference: [3] Cavalheiro A. C.: Existence of solution for Dirichlet problem of some degenerate quasilinear elliptic equations.J. Adv. Res. Appl. Math. 6 (2014), no. 4, 46–58; doi: 10.5373/jaram.1978.022014. 10.5373/jaram.1978.022014
Reference: [4] Colombo M.: Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems.Publications of the Scuolla Normale Superiore Pisa, 22, Pisa, 2017.
Reference: [5] Fabes E., Kenig C., Serapioni R.: The local regularity of solutions of degenerate elliptic equations.Comm. Partial Differential Equations 7 (1982), 77–116; doi:10.1080/03605308208820218. 10.1080/03605308208820218
Reference: [6] Fernandes J. C., Franchi B.: Existence and properties of the Green function for a class of degenerate parabolic equations.Rev. Mat. Iberoamericana 12 (1996), 491–525. 10.4171/RMI/206
Reference: [7] Garcia-Cuerva J., Rubio de Francia J. L.: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies, 116, North Holland Publishing Co., Amsterdam, 1985.
Reference: [8] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1993.
Reference: [9] Kufner A.: Weighted Sobolev Spaces.John Wiley & Sons, New York, 1985. Zbl 0862.46017
Reference: [10] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226. 10.1090/S0002-9947-1972-0293384-6
Reference: [11] Torchinsky A.: Real-Variable Methods in Harmonic Analysis.Academic Press, San Diego, 1986. Zbl 1097.42002
Reference: [12] Turesson B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces.Lecture Notes in Math., 1736, Springer, Berlin, 2000. 10.1007/BFb0103912
Reference: [13] Xu X.: A local partial regularity theorem for weak solutions of degenerate elliptic equations and its applications to the thermistor problem.Differential Integral Equations 12 (1999), no. 1, 83–100.
Reference: [14] Zeidler E.: Nonlinear Functional Analysis and its Applications, II/B.Springer, New York, 1990.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-1_6.pdf 292.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo