Previous |  Up |  Next

Article

Title: Some versions of second countability of metric spaces in ZF and their role to compactness (English)
Author: Keremedis, Kyriakos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 1
Year: 2018
Pages: 119-134
Summary lang: English
.
Category: math
.
Summary: In the realm of metric spaces we show in ZF that: (i) A metric space is compact if and only if it is countably compact and for every $\varepsilon > 0$, every cover by open balls of radius $\varepsilon $ has a countable subcover. (ii) Every second countable metric space has a countable base consisting of open balls if and only if the axiom of countable choice restricted to subsets of $\mathbb{R}$ holds true. (iii) A countably compact metric space is separable if and only if it is second countable. (English)
Keyword: axiom of choice
Keyword: compact space
Keyword: countably compact space
Keyword: totally bounded space
Keyword: Lindelöf space
Keyword: separable space
Keyword: second countable metric space
MSC: 54E35
MSC: 54E45
idZBL: Zbl 06890400
idMR: MR3783812
DOI: 10.14712/1213-7243.2015.229
.
Date available: 2018-04-17T13:52:10Z
Last updated: 2020-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147182
.
Reference: [1] Bentley H. L., Herrlich H.: Countable choice and pseudometric spaces.Topology Appl. 85 (1998), 153–164. Zbl 0922.03068, 10.1016/S0166-8641(97)00138-7
Reference: [2] Brunner N.: Lindelöf Räume und Auswahlaxiom.Anz. Österr. Akad. Wiss. Math.-Nat. 119 (1982), 161–165.
Reference: [3] Good C., Tree I. J., Watson S.: On Stone's theorem and the axiom of choice.Proc. Amer. Math. Soc. 126 (1998), 1211–1218. 10.1090/S0002-9939-98-04163-X
Reference: [4] Herrlich H.: Axiom of Choice.Lecture Notes in Mathematics, 1876, Springer, Berlin, 2006. Zbl 1102.03049
Reference: [5] Herrlich H.: Products of Lindelöf $T_{2}$-spaces are Lindelöf---in some models of $ {\rm {ZF}}$.Comment. Math. Univ. Carolin. 43, (2002), no. 2, 319–333.
Reference: [6] Herrlich H., Strecker G. E.: When is $\mathbb N$ Lindelöf?.Comment. Math. Univ. Carolin. 38 (1997), no. 3, 553–556.
Reference: [7] Howard P., Keremedis K., Rubin J. E., Stanley A.: Paracompactness of metric spaces and the axiom of multiple choice.Math. Log. Q. 46 (2000), no. 2, 219–232. 10.1002/(SICI)1521-3870(200005)46:2<219::AID-MALQ219>3.0.CO;2-2
Reference: [8] Howard P., Rubin J. E.: Consequences of the Axiom of Choice.Math. Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl 0947.03001, 10.1090/surv/059
Reference: [9] Keremedis K.: On the relative strength of forms of compactness of metric spaces and their countable productivity in $\mathbf {ZF}$.Topology Appl. 159 (2012), 3396–3403. 10.1016/j.topol.2012.08.003
Reference: [10] Keremedis K.: On metric spaces where continuous real valued functions are uniformly continuous in $\mathbf {ZF}$.Topology Appl. 210 (2016), 366–375. 10.1016/j.topol.2016.07.021
Reference: [11] Keremedis K.: Some notions of separability of metric spaces in $\mathbf {ZF}$ and their relation to compactness.Bull. Polish Acad. Sci. Math. 64 (2016), 109–136. 10.4064/ba8087-12-2016
Reference: [12] Keremedis K., Tachtsis E.: Compact metric spaces and weak forms of the axiom of choice.MLQ Math. Log. Q. 47 (2001), 117–128. 10.1002/1521-3870(200101)47:1<117::AID-MALQ117>3.0.CO;2-N
Reference: [13] Munkres J. R.: Topology.Prentice-Hall, New Jersey, 1975. Zbl 0951.54001
Reference: [14] Tachtsis E.: Disasters in metric topology without choice.Comment. Math. Univ. Carolin. 43 (2002), no. 1, 165–174.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-1_9.pdf 314.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo