Previous |  Up |  Next

Article

Title: Proper connection number of bipartite graphs (English)
Author: Yue, Jun
Author: Wei, Meiqin
Author: Zhao, Yan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 307-322
Summary lang: English
.
Category: math
.
Summary: An edge-colored graph $G$ is proper connected if every pair of vertices is connected by a proper path. The proper connection number of a connected graph $G$, denoted by ${\rm pc}(G)$, is the smallest number of colors that are needed to color the edges of $G$ in order to make it proper connected. In this paper, we obtain the sharp upper bound for ${\rm pc}(G)$ of a general bipartite graph $G$ and a series of extremal graphs. Additionally, we give a proper $2$-coloring for a connected bipartite graph $G$ having $\delta (G)\geq 2$ and a dominating cycle or a dominating complete bipartite subgraph, which implies ${\rm pc}(G)=2$. Furthermore, we get that the proper connection number of connected bipartite graphs with $\delta \geq 2$ and ${\rm diam}(G)\leq 4$ is two. (English)
Keyword: proper coloring
Keyword: proper connection number
Keyword: bipartite graph
Keyword: dominating set
MSC: 05C15
MSC: 05C69
MSC: 05C75
idZBL: Zbl 06890375
idMR: MR3819176
DOI: 10.21136/CMJ.2018.0122-16
.
Date available: 2018-06-11T10:50:56Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147221
.
Reference: [1] Andrews, E., Lumduanhom, C., Laforge, E., Zhang, P.: On proper-path colorings in graphs.J. Comb. Math. Comb. Comput. 97 (2016), 189-207. Zbl 1347.05055, MR 3524734
Reference: [2] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate Texts in Mathematics 244, Springer, New York (2008). Zbl 1134.05001, MR 2368647, 10.1007/978-1-84628-970-5
Reference: [3] Borozan, V., Fujita, S., Gerek, A., Magnant, C., Manoussakis, Y., Montero, L., Tuza, Z.: Proper connection of graphs.Discrete Math. 312 (2012), 2550-2560. Zbl 1246.05090, MR 2935404, 10.1016/j.disc.2011.09.003
Reference: [4] Li, X., Magnant, C.: Properly colored notations of connectivity---a dynamic survey.Theory and Applications of Graphs 0 (2015), Article 2, 30 pages. MR 2606615, 10.20429/tag.2015.000102
Reference: [5] Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey.Graphs Comb. 29 (2013), 1-38. Zbl 1258.05058, MR 3015944, 10.1007/s00373-012-1243-2
Reference: [6] Li, X., Sun, Y.: Rainbow Connections of Graphs.Springer Briefs in Mathematics, Springer, New York (2012). Zbl 1250.05066, MR 3183989, 10.1007/978-1-4614-3119-0
Reference: [7] Li, X., Wei, M., Yue, J.: Proper connection number and connected dominating sets.Theor. Comput. Sci. 607 (2015), 480-487. Zbl 1333.05227, MR 3429068, 10.1016/j.tcs.2015.06.006
.

Files

Files Size Format View
CzechMathJ_68-2018-2_2.pdf 413.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo