Previous |  Up |  Next

Article

Title: Coherence relative to a weak torsion class (English)
Author: Zhu, Zhanmin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 455-474
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 $$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given. (English)
Keyword: $(\mathcal {T},n)$-presented module
Keyword: $(\mathcal {T},n)$-injective module
Keyword: $(\mathcal {T},n)$-flat module
Keyword: $(\mathcal {T},n)$-coherent ring
MSC: 16D40
MSC: 16D50
MSC: 16P70
idZBL: Zbl 06890383
idMR: MR3819184
DOI: 10.21136/CMJ.2018.0494-16
.
Date available: 2018-06-11T10:55:10Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147229
.
Reference: [1] Chase, S. U.: Direct products of modules.Trans. Am. Math. Soc. 97 (1960), 457-473. Zbl 0100.26602, MR 0120260, 10.1090/S0002-9947-1960-0120260-3
Reference: [2] Cheatham, T. J., Stone, D. R.: Flat and projective character modules.Proc. Am. Math. Soc. 81 (1981), 175-177. Zbl 0458.16014, MR 0593450, 10.1090/S0002-9939-1981-0593450-2
Reference: [3] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742
Reference: [4] Costa, D. L.: Parameterizing families of non-Noetherian rings.Commun. Algebra 22 (1994), 3997-4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061
Reference: [5] Enochs, E.: A note on absolutely pure modules.Canad. Math. Bull. 19 (1976), 361-362. Zbl 0346.16020, MR 0429988, 10.4153/CMB-1976-054-5
Reference: [6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [7] Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A.: The existence of Gorenstein flat covers.Math. Scand. 94 (2004), 46-62. Zbl 1061.16003, MR 2032335, 10.7146/math.scand.a-14429
Reference: [8] Jones, M. Finkel: Coherence relative to an hereditary torsion theory.Commun. Algebra 10 (1982), 719-739. Zbl 0483.16027, MR 0650869, 10.1080/00927878208822745
Reference: [9] Holm, H., Jørgensen, P.: Covers, precovers, and purity.Illinois J. Math. 52 (2008), 691-703. Zbl 1189.16007, MR 2524661
Reference: [10] Mao, L., Ding, N.: Relative coherence of rings.J. Algebra Appl. 11 (2012), 1250047, 16 pages. Zbl 1252.16018, MR 2928115, 10.1142/S0219498811005749
Reference: [11] Megibben, C.: Absolutely pure modules.Proc. Am. Math. Soc. 26 (1970), 561-566. Zbl 0216.33803, MR 0294409, 10.1090/S0002-9939-1970-0294409-8
Reference: [12] Rotman, J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1979). Zbl 0441.18018, MR 0538169
Reference: [13] Stenström, B.: Coherent rings and FP-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. Zbl 0194.06602, MR 0271145, 10.1112/jlms/s2-2.2.323
Reference: [14] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory.Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York (1975). Zbl 0296.16001, MR 0389953, 10.1007/978-3-642-66066-5
Reference: [15] Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories.Lecture notes for the workshop. Homological Methods in Module Theory, Cortona (2000).
Reference: [16] Wisbauer, R.: Foundations of Module and Ring Theory. A Handbook for Study and Research.Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia (1991). Zbl 0746.16001, MR 1144522
Reference: [17] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules.Czech. Math. J. 61 (2011), 359-369. Zbl 1249.13011, MR 2905409, 10.1007/s10587-011-0080-4
Reference: [18] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings.Commun. Algebra 32 (2004), 2425-2441. Zbl 1089.16001, MR 2100480, 10.1081/AGB-120037230
.

Files

Files Size Format View
CzechMathJ_68-2018-2_10.pdf 350.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo