Title:
|
Coherence relative to a weak torsion class (English) |
Author:
|
Zhu, Zhanmin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
455-474 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules $$ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 $$ such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given. (English) |
Keyword:
|
$(\mathcal {T},n)$-presented module |
Keyword:
|
$(\mathcal {T},n)$-injective module |
Keyword:
|
$(\mathcal {T},n)$-flat module |
Keyword:
|
$(\mathcal {T},n)$-coherent ring |
MSC:
|
16D40 |
MSC:
|
16D50 |
MSC:
|
16P70 |
idZBL:
|
Zbl 06890383 |
idMR:
|
MR3819184 |
DOI:
|
10.21136/CMJ.2018.0494-16 |
. |
Date available:
|
2018-06-11T10:55:10Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147229 |
. |
Reference:
|
[1] Chase, S. U.: Direct products of modules.Trans. Am. Math. Soc. 97 (1960), 457-473. Zbl 0100.26602, MR 0120260, 10.1090/S0002-9947-1960-0120260-3 |
Reference:
|
[2] Cheatham, T. J., Stone, D. R.: Flat and projective character modules.Proc. Am. Math. Soc. 81 (1981), 175-177. Zbl 0458.16014, MR 0593450, 10.1090/S0002-9939-1981-0593450-2 |
Reference:
|
[3] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742 |
Reference:
|
[4] Costa, D. L.: Parameterizing families of non-Noetherian rings.Commun. Algebra 22 (1994), 3997-4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061 |
Reference:
|
[5] Enochs, E.: A note on absolutely pure modules.Canad. Math. Bull. 19 (1976), 361-362. Zbl 0346.16020, MR 0429988, 10.4153/CMB-1976-054-5 |
Reference:
|
[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662 |
Reference:
|
[7] Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A.: The existence of Gorenstein flat covers.Math. Scand. 94 (2004), 46-62. Zbl 1061.16003, MR 2032335, 10.7146/math.scand.a-14429 |
Reference:
|
[8] Jones, M. Finkel: Coherence relative to an hereditary torsion theory.Commun. Algebra 10 (1982), 719-739. Zbl 0483.16027, MR 0650869, 10.1080/00927878208822745 |
Reference:
|
[9] Holm, H., Jørgensen, P.: Covers, precovers, and purity.Illinois J. Math. 52 (2008), 691-703. Zbl 1189.16007, MR 2524661 |
Reference:
|
[10] Mao, L., Ding, N.: Relative coherence of rings.J. Algebra Appl. 11 (2012), 1250047, 16 pages. Zbl 1252.16018, MR 2928115, 10.1142/S0219498811005749 |
Reference:
|
[11] Megibben, C.: Absolutely pure modules.Proc. Am. Math. Soc. 26 (1970), 561-566. Zbl 0216.33803, MR 0294409, 10.1090/S0002-9939-1970-0294409-8 |
Reference:
|
[12] Rotman, J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1979). Zbl 0441.18018, MR 0538169 |
Reference:
|
[13] Stenström, B.: Coherent rings and FP-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. Zbl 0194.06602, MR 0271145, 10.1112/jlms/s2-2.2.323 |
Reference:
|
[14] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory.Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York (1975). Zbl 0296.16001, MR 0389953, 10.1007/978-3-642-66066-5 |
Reference:
|
[15] Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories.Lecture notes for the workshop. Homological Methods in Module Theory, Cortona (2000). |
Reference:
|
[16] Wisbauer, R.: Foundations of Module and Ring Theory. A Handbook for Study and Research.Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia (1991). Zbl 0746.16001, MR 1144522 |
Reference:
|
[17] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules.Czech. Math. J. 61 (2011), 359-369. Zbl 1249.13011, MR 2905409, 10.1007/s10587-011-0080-4 |
Reference:
|
[18] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings.Commun. Algebra 32 (2004), 2425-2441. Zbl 1089.16001, MR 2100480, 10.1081/AGB-120037230 |
. |