Previous |  Up |  Next

Article

Title: Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces (English)
Author: Karapetrović, Boban
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 559-576
Summary lang: English
.
Category: math
.
Summary: We show that if $\alpha >1$, then the logarithmically weighted Bergman space $A_{\log ^{\alpha }}^2$ is mapped by the Libera operator $\mathcal {L}$ into the space $A_{\log ^{\alpha -1}}^2$, while if $\alpha >2$ and $0<\varepsilon \leq \alpha -2$, then the Hilbert matrix operator $H$ maps $A_{\log ^\alpha }^2$ into $A_{\log ^{\alpha -2-\varepsilon }}^2$.\newline We show that the Libera operator $\mathcal {L}$ maps the logarithmically weighted Bloch space $\mathcal {B}_{\log ^{\alpha }}$, $\alpha \in \mathbb {R}$, into itself, while $H$ maps $\mathcal {B}_{\log ^{\alpha }}$ into $\mathcal {B}_{\log ^{\alpha +1}}$.\newline In Pavlović's paper (2016) it is shown that $\mathcal {L}$ maps the logarithmically weighted Hardy-Bloch space $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha >0$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$. We show that this result is sharp. We also show that $H$ maps $\mathcal {B}_{\log ^{\alpha }}^1$, $\alpha \geq {0}$, into $\mathcal {B}_{\log ^{\alpha -1}}^1$ and that this result is sharp also. (English)
Keyword: Libera operator
Keyword: Hilbert matrix operator
Keyword: Hardy space
Keyword: Bergman space
Keyword: Bloch space
Keyword: Hardy-Bloch space
MSC: 30H25
MSC: 47B38
MSC: 47G10
idZBL: Zbl 06890390
idMR: MR3819191
DOI: 10.21136/CMJ.2018.0555-16
.
Date available: 2018-06-11T10:58:15Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147236
.
Reference: [1] Jevtić, M., Karapetrović, B.: Hilbert matrix operator on Besov spaces.Publ. Math. 90 (2017), 359-371. MR 3666637, 10.5486/PMD.2017.7518
Reference: [2] Jevtić, M., Karapetrović, B.: Libera operator on mixed norm spaces $H_{\nu}^{p,q,\alpha}$ when $0<p<1$.Filomat 31 (2017), 4641-4650. MR 3730385, 10.2298/FIL1714641J
Reference: [3] Jevtić, M., Vukotić, D., Arsenović, M.: Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces.RSME Springer Series 2, Springer, Cham (2016). Zbl 1368.30001, MR 3587910, 10.1007/978-3-319-45644-7
Reference: [4] Łanucha, B., Nowak, M., Pavlović, M.: Hilbert matrix operator on spaces of analytic functions.Ann. Acad. Sci. Fenn., Math. 37 (2012), 161-174. Zbl 1258.47047, MR 2920431, 10.5186/aasfm.2012.3715
Reference: [5] Mateljević, M., Pavlović, M.: $L^p$-behaviour of the integral means of analytic functions.Stud. Math. 77 (1984), 219-237. Zbl 1188.30004, MR 0745278, 10.4064/sm-77-3-219-237
Reference: [6] Pavlović, M.: Definition and properties of the libera operator on mixed norm spaces.The Scientific World Journal 2014 (2014), Article ID 590656, 15 pages. 10.1155/2014/590656
Reference: [7] Pavlović, M.: Function Classes on the Unit Disc. An introduction.De Gruyter Studies in Mathematics 52, De Gruyter, Berlin (2014). Zbl 1296.30002, MR 3154590, 10.1515/9783110281903
Reference: [8] Pavlović, M.: Logarithmic Bloch space and its predual.Publ. Inst. Math. (Beograd) (N.S.) 100(114) (2016), 1-16. Zbl 06749634, MR 3586678, 10.2298/PIM1614001P
Reference: [9] Zhu, K.: Operator Theory in Function Spaces.Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). Zbl 0706.47019, MR 1074007
Reference: [10] Zygmund, A.: Trigonometric Series. Vol. I, II.Cambridge University Press, Cambridge (1959). Zbl 1084.42003, MR 1963498
.

Files

Files Size Format View
CzechMathJ_68-2018-2_17.pdf 319.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo