Title:
|
On some local spectral theory and bounded local resolvent of operator matrices (English) |
Author:
|
Tajmouati, Abdelaziz |
Author:
|
El Bakkali, Abdeslam |
Author:
|
Karmouni, Mohammed |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
143 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
113-122 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We extend and generalize some results in local spectral theory for upper triangular operator matrices to upper triangular operator matrices with unbounded entries. Furthermore, we investigate the boundedness of the local resolvent function for operator matrices. (English) |
Keyword:
|
local resolvent function |
Keyword:
|
single-valued extension property |
Keyword:
|
operator matrix |
MSC:
|
47A10 |
MSC:
|
47A11 |
MSC:
|
47A53 |
idZBL:
|
Zbl 06890409 |
idMR:
|
MR3831481 |
DOI:
|
10.21136/MB.2017.0052-16 |
. |
Date available:
|
2018-06-11T10:59:32Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147238 |
. |
Reference:
|
[1] Aiena, P., Trapani, C., Triolo, S.: SVEP and local spectral radius formula for unbounded operators.Filomat 28 (2014), 263-273. Zbl 06704755, MR 3360003, 10.2298/FIL1402263A |
Reference:
|
[2] Bai, Q., Huang, J., Chen, A.: Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices.Linear Multilinear Algebra 64 (2016), 1583-1594. Zbl 06605447, MR 3503370, 10.1080/03081087.2015.1111290 |
Reference:
|
[3] Barraa, M., Boumazgour, M.: A note on the spectrum of an upper triangular operator matrix.Proc. Am. Math. Soc. 131 (2003), 3083-3088. Zbl 1050.47005, MR 1993217, 10.1090/S0002-9939-03-06862-X |
Reference:
|
[4] Benhida, C., Zerouali, E. H., Zguitti, H.: Spectra of upper triangular operator matrices.Proc. Am. Math. Soc. 133 (2005), 3013-3020. Zbl 1067.47005, MR 2159780, 10.1090/S0002-9939-05-07812-3 |
Reference:
|
[5] Bermudez, T., Gonzalez, M.: On the boundedness of the local resolvent function.Integral Equations Oper. Theory 34 (1999), 1-8. Zbl 0931.47003, MR 1690283, 10.1007/BF01332488 |
Reference:
|
[6] Bračič, J., Müller, V.: On bounded local resolvents.Integral Equations Oper. Theory 55 (2006), 477-486. Zbl 1113.47003, MR 2250159, 10.1007/s00020-005-1402-4 |
Reference:
|
[7] Du, H., Jin, P.: Perturbation of spectrums of $2\times 2$ operator matrices.Proc. Am. Math. Soc. 121 (1994), 761-766. Zbl 0814.47016, MR 1185266, 10.2307/2160273 |
Reference:
|
[8] Elbjaoui, H., Zerouali, E. H.: Local spectral theory for $2\times2$ operator matrices.Int. J. Math. Math. Sci. 2003 (2003), 2667-2672. Zbl 1060.47003, MR 2005905, 10.1155/S0161171203012043 |
Reference:
|
[9] Eschmeier, J., Prunaru, B.: Invariant subspaces and localizable spectrum.Integral Equations Oper. Theory 42 (2002), 461-471. Zbl 1010.47006, MR 1885444, 10.1007/BF01270923 |
Reference:
|
[10] González, M.: An example of a bounded local resolvent.Operator Theory, Operator Algebras and Related Topics. Proc. 16th Int. Conf. Operator Theory, Timişoara, 1996 Theta Found., Bucharest (1997), 159-162. Zbl 0943.47002, MR 1728418 |
Reference:
|
[11] Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of $2\times 2$ upper triangular operator matrices.Proc. Am. Math. Soc. 128 (2000), 119-123. Zbl 0944.47004, MR 1618686, 10.1090/S0002-9939-99-04965-5 |
Reference:
|
[12] Houimdi, M., Zguitti, H.: Local spectral properties of a square matrix of operators.Acta Math. Vietnam 25 (2000), 137-144 (in French). Zbl 0970.47003, MR 1770883 |
Reference:
|
[13] Neumann, M. M.: On local spectral properties of operators on Banach spaces.Int. Workshop on Operator Theory, Cefalù, Italy, 1997 (P. Aiena et al., eds.) Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, (2) {\it 56} (1998), 15-25. Zbl 0929.47001, MR 1710819 |
Reference:
|
[14] Zerouali, E. H., Zguitti, H.: Perturbation of spectra of operator matrices and local spectral theory.J. Math. Anal. Appl. 324 (2006), 992-1005. Zbl 1105.47006, MR 2265096, 10.1016/j.jmaa.2005.12.065 |
Reference:
|
[15] Zhong, W.: Method of separation of variables and Hamiltonian system.Comput. Struct. Mech. Appl. 8 (1991), 229-240 (in Chinese). |
. |