Previous |  Up |  Next

Article

Title: On some local spectral theory and bounded local resolvent of operator matrices (English)
Author: Tajmouati, Abdelaziz
Author: El Bakkali, Abdeslam
Author: Karmouni, Mohammed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 2
Year: 2018
Pages: 113-122
Summary lang: English
.
Category: math
.
Summary: We extend and generalize some results in local spectral theory for upper triangular operator matrices to upper triangular operator matrices with unbounded entries. Furthermore, we investigate the boundedness of the local resolvent function for operator matrices. (English)
Keyword: local resolvent function
Keyword: single-valued extension property
Keyword: operator matrix
MSC: 47A10
MSC: 47A11
MSC: 47A53
idZBL: Zbl 06890409
idMR: MR3831481
DOI: 10.21136/MB.2017.0052-16
.
Date available: 2018-06-11T10:59:32Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147238
.
Reference: [1] Aiena, P., Trapani, C., Triolo, S.: SVEP and local spectral radius formula for unbounded operators.Filomat 28 (2014), 263-273. Zbl 06704755, MR 3360003, 10.2298/FIL1402263A
Reference: [2] Bai, Q., Huang, J., Chen, A.: Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices.Linear Multilinear Algebra 64 (2016), 1583-1594. Zbl 06605447, MR 3503370, 10.1080/03081087.2015.1111290
Reference: [3] Barraa, M., Boumazgour, M.: A note on the spectrum of an upper triangular operator matrix.Proc. Am. Math. Soc. 131 (2003), 3083-3088. Zbl 1050.47005, MR 1993217, 10.1090/S0002-9939-03-06862-X
Reference: [4] Benhida, C., Zerouali, E. H., Zguitti, H.: Spectra of upper triangular operator matrices.Proc. Am. Math. Soc. 133 (2005), 3013-3020. Zbl 1067.47005, MR 2159780, 10.1090/S0002-9939-05-07812-3
Reference: [5] Bermudez, T., Gonzalez, M.: On the boundedness of the local resolvent function.Integral Equations Oper. Theory 34 (1999), 1-8. Zbl 0931.47003, MR 1690283, 10.1007/BF01332488
Reference: [6] Bračič, J., Müller, V.: On bounded local resolvents.Integral Equations Oper. Theory 55 (2006), 477-486. Zbl 1113.47003, MR 2250159, 10.1007/s00020-005-1402-4
Reference: [7] Du, H., Jin, P.: Perturbation of spectrums of $2\times 2$ operator matrices.Proc. Am. Math. Soc. 121 (1994), 761-766. Zbl 0814.47016, MR 1185266, 10.2307/2160273
Reference: [8] Elbjaoui, H., Zerouali, E. H.: Local spectral theory for $2\times2$ operator matrices.Int. J. Math. Math. Sci. 2003 (2003), 2667-2672. Zbl 1060.47003, MR 2005905, 10.1155/S0161171203012043
Reference: [9] Eschmeier, J., Prunaru, B.: Invariant subspaces and localizable spectrum.Integral Equations Oper. Theory 42 (2002), 461-471. Zbl 1010.47006, MR 1885444, 10.1007/BF01270923
Reference: [10] González, M.: An example of a bounded local resolvent.Operator Theory, Operator Algebras and Related Topics. Proc. 16th Int. Conf. Operator Theory, Timişoara, 1996 Theta Found., Bucharest (1997), 159-162. Zbl 0943.47002, MR 1728418
Reference: [11] Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of $2\times 2$ upper triangular operator matrices.Proc. Am. Math. Soc. 128 (2000), 119-123. Zbl 0944.47004, MR 1618686, 10.1090/S0002-9939-99-04965-5
Reference: [12] Houimdi, M., Zguitti, H.: Local spectral properties of a square matrix of operators.Acta Math. Vietnam 25 (2000), 137-144 (in French). Zbl 0970.47003, MR 1770883
Reference: [13] Neumann, M. M.: On local spectral properties of operators on Banach spaces.Int. Workshop on Operator Theory, Cefalù, Italy, 1997 (P. Aiena et al., eds.) Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, (2) {\it 56} (1998), 15-25. Zbl 0929.47001, MR 1710819
Reference: [14] Zerouali, E. H., Zguitti, H.: Perturbation of spectra of operator matrices and local spectral theory.J. Math. Anal. Appl. 324 (2006), 992-1005. Zbl 1105.47006, MR 2265096, 10.1016/j.jmaa.2005.12.065
Reference: [15] Zhong, W.: Method of separation of variables and Hamiltonian system.Comput. Struct. Mech. Appl. 8 (1991), 229-240 (in Chinese).
.

Files

Files Size Format View
MathBohem_143-2018-2_1.pdf 272.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo