Previous |  Up |  Next

Article

Title: Binary equality words with two $b$'s (English)
Author: Holub, Štěpán
Author: Sýkora, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 153-172
Summary lang: English
.
Category: math
.
Summary: Deciding whether a given word is an equality word of two nonperiodic morphisms is also known as the dual Post correspondence problem. Although the problem is decidable, there is no practical decision algorithm. Already in the binary case, the classification is a large project dating back to 1980s. In this paper we give a full classification of binary equality words in which one of the letters has two occurrences. (English)
Keyword: equality languages
Keyword: dual Post correspondence problem
Keyword: periodicity forcing
MSC: 68R15
idZBL: Zbl 06940860
idMR: MR3815682
DOI: 10.14712/1213-7243.2015.247
.
Date available: 2018-06-20T08:35:55Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147249
.
Reference: [1] Barbin-Le R. E., Le Rest M.: Sur la combinatoire des codes à deux mots.Theoret. Comput. Sci. 41 (1985), no. 1, 61–80 (French. English summary). MR 0841023, 10.1016/0304-3975(85)90060-X
Reference: [2] Baumslag G.: Topics in Combinatorial Group Theory.Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1993. MR 1243634
Reference: [3] Culik K. II, Karhumäki J.: On the equality sets for homomorphisms on free monoids with two generators.RAIRO Inform. Théor. 14 (1980), no. 4, 349–369. MR 0607436, 10.1051/ita/1980140403491
Reference: [4] Day J. D., Reidenbach D., Schneider J. C.: On the dual post correspondence problem.Internat. J. Found. Comput. Sci. 25 (2014), no. 8, 1033–1048. MR 3315805
Reference: [5] Day J. D., Reidenbach D., Schneider J. C.: Periodicity forcing words.Theoret. Comput. Sci. 601 (2015), 2–14. MR 3396330, 10.1016/j.tcs.2015.08.033
Reference: [6] Ehrenfeucht A., Karhumäki J., Rozenberg G.: The (generalized) Post correspondence problem with lists consisting of two words is decidable.Theoret. Comput. Sci. 21 (1982), no. 2, 119–144. MR 0677104, 10.1016/0304-3975(89)90080-7
Reference: [7] Ehrenfeucht A., Karhumäki J., Rozenberg G.: On binary equality sets and a solution to the test set conjecture in the binary case.J. Algebra 85 (1983), no. 1, 76–85. MR 0723068, 10.1016/0021-8693(83)90119-9
Reference: [8] Hadravová J.: Structure of Equality Sets.PhD. Thesis, Charles University in Prague, Praha, 2015.
Reference: [9] Hadravová J., Holub Š.: Equation $x^iy^jx^k=u^iv^ju^k$ in words.Language and Automata Theory and Applications, Lecture Notes in Comput. Sci., Springer, Cham, 2015, pp. 414–423. MR 3344820
Reference: [10] Halava V., Harju T., Hirvensalo M.: Binary (generalized) Post correspondence problem.Theoret. Comput. Sci. 276 (2002), no. 1–2, 183–204. MR 1896352, 10.1016/S0304-3975(01)00157-8
Reference: [11] Halava V., Holub Š.: Binary (Generalized) Post Correspondence Problem is in $P$.TUCS Technical Report, 785, Turku, 2006. MR 2081369
Reference: [12] Holub Š.: A unique structure of two-generated binary equality sets.Developments in Language Theory (Ito M., ed.), 6th International Conf., Kyoto, 2002, Lecture Notes in Comput. Sci., 2450, Springer, Berlin, 2003, pp. 245–257. Zbl 1015.68089, MR 2177348
Reference: [13] Holub Š.: Binary equality sets are generated by two words.J. Algebra 259 (2003), no. 1, 1–42. Zbl 1010.68101, MR 1953706, 10.1016/S0021-8693(02)00534-3
Reference: [14] Holub Š.: Binary equality languages for periodic morphisms.Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory, RIMS Kokyuroku, 1366, Kyoto University, 2004, pp. 1880–2818.
Reference: [15] Karhumäki J., Maňuch J., Plandowski W.: On defect effect of bi-infinite words.Mathematical Foundations of Computer Science, 1998 (Brno), Lecture Notes in Comput. Sci., 1450, Springer, Berlin, 1998, pp. 674–682. MR 1684115
Reference: [16] Lothaire M.: Algebraic Combinatorics on Words.Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, Cambridge, 2002.
Reference: [17] Lyndon R. C., Schützenberger, M. P.: The equation $a^M=b^Nc^P$ in a free group.Michigan Math. J. 9 (1962), no. 4, 289–298. MR 0162838, 10.1307/mmj/1028998766
Reference: [18] Maňuch J.: Defect Theorems and Infinite Words.TUCS Dissertations, 41, Turku, 2002.
Reference: [19] Post E. L.: A variant of a recursively unsolvable problem.Bull. Amer. Math. Soc. 52 (1946), no. 4, 264–268. Zbl 0063.06329, MR 0015343, 10.1090/S0002-9904-1946-08555-9
Reference: [20] Rozenberg G., Salomaa A., eds.: Handbook of Formal Languages, Vol. 1: Word, Language, Grammar.Springer, New York, 1997. MR 1469993
Reference: [21] Spehner J.-C.: Quelques problèmes d'extension, de conjugaison et de presentation des sous-monoïdes d'un monoïde libre.Thèse, Université Paris VII, Paris, 1976 (French).
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_2.pdf 346.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo