Previous |  Up |  Next

Article

Title: Algorithm for the complement of orthogonal operations (English)
Author: Fryz, Iryna V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 135-151
Summary lang: English
.
Category: math
.
Summary: G. B. Belyavskaya and G. L. Mullen showed the existence of a complement for a $k$-tuple of orthogonal $n$-ary operations, where $k<n$, to an $n$-tuple of orthogonal $n$-ary operations. But they proposed no method for complementing. In this article, we give an algorithm for complementing a $k$-tuple of orthogonal $n$-ary operations to an $n$-tuple of orthogonal $n$-ary operations and an algorithm for complementing a $k$-tuple of orthogonal $k$-ary operations to an $n$-tuple of orthogonal $n$-ary operations. Also we find some estimations of the number of complements. (English)
Keyword: orthogonality of operations
Keyword: retract orthogonality of operations
Keyword: complement of orthogonal operations
Keyword: block-wise recursive algorithm
MSC: 05B15
MSC: 20N05
MSC: 20N15
idZBL: Zbl 06940859
idMR: MR3815681
DOI: 10.14712/1213-7243.2015.241
.
Date available: 2018-06-20T07:14:59Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147247
.
Reference: [1] Aczél J., Dhombres J.: Functional Equations in Several Variables.With applications to Mathematics, Information Theory and to the Natural and Social Sciences. Encyclopedia of Mathematics and Its Applications, 31, Cambridge University Press, Cambridge, 1989. MR 1004465
Reference: [2] Bektenov A. S., Jakubov T.: Systems of orthogonal $n$-ary operations.Bul. Akad. Štiince RSS Moldoven. (1974), no. 3, 7–14, 93 (Russian). MR 0360905
Reference: [3] Belyavskaya G. B., Mullen G. L.: Orthogonal hypercubes and $n$-ary operations.Quasigroups Related Systems 13 (2005), no. 1, 73–86. Zbl 1101.20049, MR 2206148
Reference: [4] Couselo E., Gonzalez S., Markov V., Nechaev A.: Recursive MDS-codes and recursively differentiable quasigroups.Discrete Math. Appl. 8 (1998), no. 3, 217–245; doi: 10.1515/dma.1998.8.3.217. MR 1673150, 10.1515/dma.1998.8.3.217
Reference: [5] Dougherty S. T., Szczepanski T. A.: Latin $k$-hypercubes.Australas. J. Combin. 40 (2008), 145–160. MR 2381422
Reference: [6] Ethier J. T., Mullen G. L.: Strong forms of orthogonality for sets of hypercubes.Discrete Math. 312 (2012), no. 12–13, 2050–2061; doi: 10.1016/j.disc.2012.03.008. MR 2920865, 10.1016/j.disc.2012.03.008
Reference: [7] Evans T.: The construction of orthogonal $k$-skeins and latin $k$-cubes.Aequationes Math. 14 (1976), no. 3, 485–491. MR 0414396, 10.1007/BF01835999
Reference: [8] Fryz I. V.: Orthogonality and retract orthogonality of operations.to appear in Bul. Akad. Štiince RSS Moldoven.
Reference: [9] Fryz I. V., Sokhatsky F. M.: Block composition algorithm for constructing orthogonal $n$-ary operations.Discrete Math. 340 (2017), no. 8, 1957–1966; doi: 10.1016/j.disc.2016.11.012. MR 3648223, 10.1016/j.disc.2016.11.012
Reference: [10] Keedwell A. D., Dénes J.: Latin Squares and Their Applications.Elsevier/North Holland, Amsterdam, 2015. MR 3495977
Reference: [11] Markovski S., Mileva A.: On construction of orthogonal $d$-ary operations.Publ. Inst. Math. (Beograd) (N.S.) 101(115) (2017), 109–119; doi: 10.2298/PIM1715109M. MR 3700406, 10.2298/PIM1715109M
Reference: [12] Sokhatsky F. M., Krainichuk H. V.: Solution of distributive-like quasigroup functional equations.Comment. Math. Univ. Carolin. 53 (2012), no. 3, 447–459. MR 3017842
Reference: [13] Trenkler M.: On orthogonal latin $p$-dimensional cubes.Czechoslovak Math. J. 55(130) (2005), no. 3, 725–728; doi: 10.1007/s10587-005-0060-7. MR 2153097, 10.1007/s10587-005-0060-7
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_1.pdf 308.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo