Previous |  Up |  Next

Article

Title: On dihedral 2-groups as inner mapping groups of finite commutative inverse property loops (English)
Author: Niemenmaa, Markku
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 189-193
Summary lang: English
.
Category: math
.
Summary: We show that finite commutative inverse property loops may not have nonabelian dihedral 2-groups as their inner mapping group. (English)
Keyword: loop
Keyword: dihedral group
Keyword: inner mapping group
MSC: 20D10
MSC: 20N05
idZBL: Zbl 06940862
idMR: MR3815684
DOI: 10.14712/1213-7243.2015.234
.
Date available: 2018-06-28T08:41:43Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147251
.
Reference: [1] Bruck R. H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288, 10.1090/S0002-9947-1946-0017288-3
Reference: [2] Drápal A.: A class of commutative loops with metacyclic inner mapping groups.Comment. Math. Univ. Carolin. 49 (2008), no. 3, 357–382. MR 2490433
Reference: [3] Niemenmaa M.: Finite loops with nilpotent inner mapping groups are centrally nilpotent.Bull. Aust. Math. Soc. 79 (2009), no. 1, 109–114. Zbl 1167.20039, MR 2486887, 10.1017/S0004972708001093
Reference: [4] Niemenmaa M.: On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^4$.Comment. Math. Univ. Carolin. 51 (2010), no. 4, 559–563. MR 2858260
Reference: [5] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), no. 1, 112–122. Zbl 0706.20046, MR 1076080, 10.1016/0021-8693(90)90152-E
Reference: [6] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups.Bull. Austral. Math. Soc. 49 (1994), no. 1, 121–128. Zbl 0799.20020, MR 1262682, 10.1017/S0004972700016166
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_4.pdf 216.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo