Previous |  Up |  Next

Article

Title: The universal Banach space with a $K$-suppression unconditional basis (English)
Author: Banakh, Taras
Author: Garbulińska-Wegrzyn, Joanna
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 195-206
Summary lang: English
.
Category: math
.
Summary: Using the technique of Fraïssé theory, for every constant $K\ge 1$, we construct a universal object $\mathbb U_K$ in the class of Banach spaces possessing a normalized $K$-suppression unconditional Schauder basis. (English)
Keyword: $1$-suppression unconditional Schauder basis
Keyword: rational spaces
Keyword: isometry
MSC: 46B04
MSC: 46M15
MSC: 46M40
idZBL: Zbl 06940863
idMR: MR3815685
DOI: 10.14712/1213-7243.2015.248
.
Date available: 2018-06-28T08:43:01Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147257
.
Reference: [1] Albiac F., Kalton N. J.: Topics in Banach Space Theory.Graduate Texts in Mathematics, 233, Springer, Cham, 2016. Zbl 1094.46002, MR 3526021
Reference: [2] Fabián M., Halaba P., Hájek P., Montesinos Santalucía V., Pelant J., Zízler V.: Functional Analysis and Infinite-Dimensional Geometry.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer, New York, 2001. MR 1831176
Reference: [3] Fraïssé R.: Sur quelques classifications des systèmes de relations.Publ. Sci. Univ. Alger. Sér. A. 1 (1954), 35–182 (French). MR 0069236
Reference: [4] Garbulińska-Wegrzyn J.: Isometric uniqueness of a complementably universal Banach space for Schauder decompositions.Banach J. Math. Anal. 8 (2014), no. 1, 211–220. MR 3161692, 10.15352/bjma/1381782097
Reference: [5] Gurariĭ V. I.: Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces.Sibirsk. Mat. Zh. 7 (1966), 1002–1013 (Russian). MR 0200697
Reference: [6] Johnson W. B., Szankowski A.: Complementably universal Banach spaces.Studia Math. 58 (1976), no. 1, 91–97. MR 0425582, 10.4064/sm-58-1-91-97
Reference: [7] Kadec' M. Ĭ.: On complementably universal Banach spaces.Studia Math. 40 (1971), 85–89. MR 0313764, 10.4064/sm-40-1-85-89
Reference: [8] Kubiś W.: Fraïssé sequences: category-theoretic approch to universal homogeneous structures.Ann. Pure Appl. Logic 165 (2014), no. 11, 1755–1811. MR 3244668, 10.1016/j.apal.2014.07.004
Reference: [9] Kubiś W., Solecki S.: A proof of uniqueness of the Gurariĭ space.Israel J. Math. 195 (2013), no. 1, 449–456. MR 3101256, 10.1007/s11856-012-0134-9
Reference: [10] Pełczyński A.: Projections in certain Banach spaces.Studia Math. 19 (1960), 209–228. MR 0126145, 10.4064/sm-19-2-209-228
Reference: [11] Pełczyński A.: Universal bases.Studia Math. 32 (1969), 247–268. MR 0241954, 10.4064/sm-32-3-247-268
Reference: [12] Pełczyński A.: Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis.Studia Math. 40 (1971), 239–243. MR 0308753, 10.4064/sm-40-3-239-243
Reference: [13] Pełczyński A., Wojtaszczyk P.: Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces.Studia Math. 40 (1971), 91–108. MR 0313765, 10.4064/sm-40-1-91-108
Reference: [14] Schechtman G.: On Pełczyński's paper “Universal bases” (Studia Math. 32 (1969), 247–268).Israel J. Math. 22 (1975), no. 3–4, 181–184. MR 0390730
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_5.pdf 310.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo