Previous |  Up |  Next

Article

Title: A multilevel Newton's method for eigenvalue problems (English)
Author: He, Yunhui
Author: Li, Yu
Author: Xie, Hehu
Author: You, Chun'guang
Author: Zhang, Ning
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 3
Year: 2018
Pages: 281-303
Summary lang: English
.
Category: math
.
Summary: We propose a new type of multilevel method for solving eigenvalue problems based on Newton's method. With the proposed iteration method, solving an eigenvalue problem on the finest finite element space is replaced by solving a small scale eigenvalue problem in a coarse space and a sequence of augmented linear problems, derived by Newton step in the corresponding sequence of finite element spaces. This iteration scheme improves overall efficiency of the finite element method for solving eigenvalue problems. Finally, some numerical examples are provided to validate the efficiency of the proposed numerical scheme. (English)
Keyword: eigenvalue problem
Keyword: finite element method
Keyword: Newton's method
Keyword: multilevel iteration
MSC: 65B99
MSC: 65L15
MSC: 65N25
MSC: 65N30
idZBL: Zbl 06945734
idMR: MR3833662
DOI: 10.21136/AM.2018.0086-18
.
Date available: 2018-07-16T08:49:16Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147312
.
Reference: [1] Babuška, I., Osborn, J. E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems.Math. Comput. 52 (1989), 275-297. Zbl 0675.65108, MR 0962210, 10.2307/2008468
Reference: [2] Babuška, I., Osborn, J.: Eigenvalue problems.Handbook of Numerical Analysis. II: Finite Element Methods (Part 1) North-Holland, Amsterdam P. G. Ciarlet, J. L. Lions (1991), 641-787. Zbl 0875.65087, MR 1115240
Reference: [3] Brandt, A., McCormick, S., Ruge, J.: Multigrid methods for differential eigenproblems.SIAM J. Sci. Stat. Comput. 4 (1983), 244-260. Zbl 0517.65083, MR 0697178, 10.1137/0904019
Reference: [4] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15, Springer, New York (1991). Zbl 0788.73002, MR 1115205, 10.1007/978-1-4612-3172-1
Reference: [5] Chatelin, F.: Spectral Approximation of Linear Operators.Computer Science and Applied Mathematics, Academic Press, New York (1983). Zbl 0517.65036, MR 0716134, 10.1137/1.9781611970678
Reference: [6] Davidson, E. R., Thompson, W. J.: Monster matrices: their eigenvalues and eigenvectors.Comput. Phys. 7 (1993), 519-522. 10.1063/1.4823212
Reference: [7] Durán, R. G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems.Math. Models Methods Appl. Sci. 13 (2003), 1219-1229. Zbl 1072.65144, MR 1998821, 10.1142/S0218202503002878
Reference: [8] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins Studies in the Mathematical Sciences, The Johns Hopkins University Press, Baltimore (2013). Zbl 1268.65037, MR 3024913
Reference: [9] Hackbusch, W.: On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method.SIAM J. Numer. Anal. 16 (1979), 201-215. Zbl 0403.65043, MR 0526484, 10.1137/0716015
Reference: [10] Hackbusch, W.: Multi-Grid Methods and Applications.Springer Series in Computational Mathematics 4, Springer, Berlin (1985). Zbl 0595.65106, MR 0814495, 10.1007/978-3-662-02427-0
Reference: [11] Kressner, D.: A block Newton method for nonlinear eigenvalue problems.Numer. Math. 114 (2009), 355-372. Zbl 1191.65054, MR 2563153, 10.1007/s00211-009-0259-x
Reference: [12] Larson, M. G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems.SIAM J. Numer. Anal. 38 (2000), 608-625. Zbl 0974.65100, MR 1770064, 10.1137/S0036142997320164
Reference: [13] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement.Mathematics Monograph Series 1, Elsevier (2006).
Reference: [14] Lin, Q., Xie, H.: An observation on the Aubin-Nitsche lemma and its applications.Math. Pract. Theory 41 Chinese (2011), 247-258. Zbl 1265.65235, MR 2931490
Reference: [15] Lin, Q., Xie, H.: A type of multigrid method for eigenvalue problem.Technical report, Research Report of ICM-SEC, 2011 Available at\ http://www.cc.ac.cn/2011researchreport/201106.pdf\kern0pt.
Reference: [16] Lin, Q., Xie, H.: A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems.Proc. Int. Conf. Applications of Mathematics 2012 J. Brandts et al. Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2012), 134-143. Zbl 1313.65298, MR 3204407
Reference: [17] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods.Hebei University Publishers, Shijiazhuang (1996).
Reference: [18] Saad, Y.: Numerical Methods for Large Eigenvalue Problems.Algorithms and Architectures for Advanced Scientific Computing, Manchester University Press, Manchester; Halsted Press, New York (1992). Zbl 0991.65039, MR 1177405, 10.1137/1.9781611970739
Reference: [19] Shaidurov, V. V.: Multigrid Methods for Finite Elements.Mathematics and Its Applications 318, Kluwer Academic Publishers Group, Dordrecht (1995). Zbl 0837.65118, MR 1335921, 10.1007/978-94-015-8527-9
Reference: [20] Sleijpen, G. L. G., Vorst, H. A. Van der: A Jacobi-Davidson iteration method for linear eigenvalue problems.SIAM J. Matrix Anal. Appl. 17 (1996), 401-425. Zbl 0860.65023, MR 1384515, 10.1137/S0895479894270427
Reference: [21] Sleijpen, G. L. G., Vorst, H. A. van der: The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton scheme.IMACS 1996: Iterative Methods in Linear Algebra II S. Margenov, P. Vassilevski Blagoevgrad, Bulgaria (1996).
Reference: [22] Sleijpen, G. L. G., Vorst, H. A. Van der: A Jacobi-Davidson iteration method for linear eigenvalue problems.SIAM Rev. 42 (1998), 267-293. Zbl 0949.65028, MR 1778354, 10.1137/S0036144599363084
Reference: [23] Xie, H.: A multigrid method for eigenvalue problem.J. Comput. Phys. 274 (2014), 550-561. Zbl 1352.65631, MR 3231782, 10.1016/j.jcp.2014.06.030
Reference: [24] Xie, H.: A type of multilevel method for the Steklov eigenvalue problem.IMA J. Numer. Anal. 34 (2014), 592-608. Zbl 1312.65178, MR 3194801, 10.1093/imanum/drt009
Reference: [25] Xu, J.: Iterative methods by space decomposition and subspace correction.SIAM Rev. 34 (1992), 581-613. Zbl 0788.65037, MR 1193013, 10.1137/1034116
Reference: [26] Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems.Math. Comput. 70 (2001), 17-25. Zbl 0959.65119, MR 1677419, 10.1090/S0025-5718-99-01180-1
.

Files

Files Size Format View
AplMat_63-2018-3_6.pdf 479.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo