Previous |  Up |  Next

Article

Title: Explicit estimation of error constants appearing in non-conforming linear triangular finite element method (English)
Author: Liu, Xuefeng
Author: Kikuchi, Fumio
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 4
Year: 2018
Pages: 381-397
Summary lang: English
.
Category: math
.
Summary: The non-conforming linear ($P_1$) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming $P_1$ triangle. Some applications and numerical results are also included to see the validity and effectiveness of our analysis. (English)
Keyword: FEM
Keyword: non-conforming linear triangle
Keyword: a priori error estimate
Keyword: a posteriori error estimate
Keyword: error constant
Keyword: Raviart-Thomas element
MSC: 65N15
MSC: 65N30
idZBL: Zbl 06945738
idMR: MR3842959
DOI: 10.21136/AM.2018.0097-18
.
Date available: 2018-07-30T11:27:40Z
Last updated: 2020-09-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147316
.
Reference: [1] Acosta, G., Durán, R. G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations.SIAM J. Numer. Anal. 37 (1999), 18-36. Zbl 0948.65115, MR 1721268, 10.1137/S0036142997331293
Reference: [2] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis.Pure and Applied Mathematics, Wiley-Interscience, New York (2000). Zbl 1008.65076, MR 1885308, 10.1002/9781118032824
Reference: [3] Arnold, D. N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates.RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 7-32. Zbl 0567.65078, MR 0813687, 10.1051/m2an/1985190100071
Reference: [4] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [5] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [6] Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability.Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford (2001). Zbl 0995.65501, MR 1857191
Reference: [7] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations.Lectures in Mathematics ETH Zürich, Birkhäuser, Basel (2003). Zbl 1020.65058, MR 1960405, 10.1007/978-3-0348-7605-6
Reference: [8] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15, Springer, Berlin (2002). Zbl 1012.65115, MR 1894376, 10.1007/978-1-4757-3658-8
Reference: [9] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15, Springer, New York (1991). Zbl 0788.73002, MR 1115205, 10.1007/978-1-4612-3172-1
Reference: [10] Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods.J. Comput. Math. 30 (2012), 337-353. Zbl 1274.65290, MR 2965987, 10.4208/jcm.1108-m3677
Reference: [11] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics, Philadelphia (2002). Zbl 0999.65129, MR 1930132, 10.1137/1.9780898719208
Reference: [12] Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method.Math. Comput. 68 (1999), 1379-1396. Zbl 0929.65095, MR 1648383, 10.1090/S0025-5718-99-01093-5
Reference: [13] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Classics in Applied Mathematics 69, Society for Industrial and Applied Mathematics, Philadelphia (2011). Zbl 1231.35002, MR 3396210, 10.1137/1.9781611972030.ch1
Reference: [14] Hu, J., Ma, R.: The enriched Crouzeix-Raviart elements are equivalent to the Raviart-Thomas elements.J. Sci. Comput. 63 (2015), 410-425. Zbl 1319.65111, MR 3328190, 10.1007/s10915-014-9899-9
Reference: [15] Kikuchi, F.: Convergence of the ACM finite element scheme for plate bending problems.Publ. Res. Inst. Math. Sci., Kyoto Univ. 11 (1975), 247-265. Zbl 0326.73065, MR 0391540, 10.2977/prims/1195191694
Reference: [16] Kikuchi, F., Ishii, K.: A locking-free mixed triangular element for the Reissner-Mindlin plates.S. N. Atluri, G. Yagawa, T. Cruse Computational Mechanics'95: Theory and Applications Springer, Berlin (1995), 1608-1613. 10.1007/978-3-642-79654-8
Reference: [17] Kikuchi, F., Liu, X.: Determination of the Babuska-Aziz constant for the linear triangular finite element.Japan J. Ind. Appl. Math. 23 (2006), 75-82. Zbl 1098.65107, MR 2210297, 10.1007/BF03167499
Reference: [18] Kikuchi, F., Liu, X.: Estimation of interpolation error constants for the $P_0$ and $P_1$ triangular finite elements.Comput. Methods Appl. Mech. Eng. 196 (2007), 3750-3758. Zbl 1173.65346, MR 2340000, 10.1016/j.cma.2006.10.029
Reference: [19] Kikuchi, F., Saito, H.: Remarks on a posteriori error estimation for finite element solutions.J. Comput. Appl. Math. 199 (2007), 329-336. Zbl 1109.65094, MR 2269515, 10.1016/j.cam.2005.07.031
Reference: [20] Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations.Texts in Applied Mathematics 44, Springer, New York (2003). Zbl 1034.65086, MR 1988268, 10.1007/b97419
Reference: [21] Kobayashi, K.: On the interpolation constants over triangular elements.Kyoto University Research Information Repository 1733 (2011), 58-77 Japanese.
Reference: [22] Kobayashi, K.: On the interpolation constants over triangular elements.Proceedings of the International Conference Applications of Mathematics 2015 J. Brandts et al. Czech Academy of Sciences, Institute of Mathematics, Praha (2015), 110-124. Zbl 1363.65014, MR 3700193
Reference: [23] Liu, X., Kikuchi, F.: Estimation of error constants appearing in non-conforming linear triangular finite element.Procceding of APCOM'07 in conjunction with EPMESC XI, Kyoto (2007), Available at http://www.xfliu.org/p/2007LK.pdf\kern0pt.
Reference: [24] Liu, X., Kikuchi, F.: Analysis and estimation of error constants for $P_0$ and $P_1$ interpolations over triangular finite elements.J. Math. Sci., Tokyo 17 (2010), 27-78. Zbl 1248.65118, MR 2676659
Reference: [25] Marini, L. D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method.SIAM J. Numer. Anal. 22 (1985), 493-496. Zbl 0573.65082, MR 0787572, 10.1137/0722029
Reference: [26] Nakao, M. T.: Numerical verification methods for solutions of ordinary and partial differential equations.Numer. Funct. Anal. Optimization 22 (2001), 321-356. Zbl 1106.65315, MR 1849323, 10.1081/NFA-100105107
Reference: [27] Nakao, M. T., Yamamoto, N.: A guaranteed bound of the optimal constant in the error estimates for linear triangular element.Topics in Numerical Analysis. With Special Emphasis on Nonlinear Problems G. Alefeld, X. Chen Comput Suppl. 15, Springer, Wien (2001), 165-173. Zbl 1013.65119, MR 1874511, 10.1007/978-3-7091-6217-0
Reference: [28] Temam, R.: Numerical Analysis.D. Reidel Publishing Company, Dordrecht (1973). Zbl 0261.65001, MR 0347099, 10.1007/978-94-010-2565-2
.

Files

Files Size Format View
AplMat_63-2018-4_1.pdf 389.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo