Previous |  Up |  Next

Article

Title: Entry-exit decisions with implementation delay under uncertainty (English)
Author: Zhang, Yong-Chao
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 4
Year: 2018
Pages: 399-422
Summary lang: English
.
Category: math
.
Summary: We employ a natural method from the perspective of the optimal stopping theory to analyze entry-exit decisions with implementation delay of a project, and provide closed expressions for optimal entry decision times, optimal exit decision times, and the maximal expected present value of the project. The results in conventional research were obtained under the restriction that the sum of the entry cost and exit cost is nonnegative. In practice, we may meet cases when this sum is negative, so it is necessary to remove the restriction. If the sum is negative, there may exist two trigger prices of entry decision, which does not happen when the sum is nonnegative, and it is not optimal to enter and then immediately exit the project even though it is an arbitrage opportunity. (English)
Keyword: entry decision time
Keyword: exit decision time
Keyword: implementation delay
Keyword: optimal stopping problem
Keyword: viscosity solution
MSC: 60G40
MSC: 91B06
MSC: 91G80
idZBL: Zbl 06945739
idMR: MR3842960
DOI: 10.21136/AM.2018.0205-17
.
Date available: 2018-07-30T11:28:31Z
Last updated: 2020-09-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147318
.
Reference: [1] Applebaum, D.: Lévy Processes and Stochastic Calculus.Cambridge Studies in Advanced Mathematics 116, Cambridge University Press, Cambridge (2009). Zbl 1200.60001, MR 2512800, 10.1017/CBO9780511809781
Reference: [2] Bar-Ilan, A., Strange, W. C.: Investment lags.Amer. Econ. Rev. 86 (1996), 610-622.
Reference: [3] Boyarchenko, S., Levendorskiĭ, S.: Irreversible Decisions Under Uncertainty. Optimal Stopping Made Easy.Studies in Economic Theory 27, Springer, Berlin (2007). Zbl 1131.91001, MR 2370439, 10.1007/978-3-540-73746-9
Reference: [4] Costeniuc, M., Schnetzer, M., Taschini, L.: Entry and exit decision problem with implementation delay.J. Appl. Probab. 45 (2008), 1039-1059. Zbl 1167.60008, MR 2484160, 10.1239/jap/1231340232
Reference: [5] Dixit, A.: Entry and exit decisions under uncertainty.J. Political Econ. 97 (1989), 620-638. 10.1086/261619
Reference: [6] Duckworth, J. K., Zervos, M.: An investment model with entry and exit decisions.J. Appl. Probab. 37 (2000), 547-559. Zbl 0959.93058, MR 1781012, 10.1239/jap/1014842558
Reference: [7] Gauthier, L., Morellec, E.: Investment under uncertainty with implementation delay. New Developments and Applications in Real Options.Available at https://infoscience.epfl.ch/record/188140/files/morellec$_-$delay.PDF (2000).
Reference: [8] Isik, M., Coble, K. H., Hudson, D., House, L. O.: A model of entry-exit decisions and capacity choice under demand uncertainty.Agricultural Economics 28 (2003), 215-224. 10.1016/S0169-5150(03)00016-1
Reference: [9] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus.Graduate Texts in Mathematics 113, Springer, New York (1991). Zbl 0734.60060, MR 1121940, 10.1007/978-1-4612-0949-2
Reference: [10] Kjærland, F.: A real option analysis of investments in hydropower---The case of Norway.Energy Policy 35 (2007), 5901-5908. 10.1016/j.enpol.2007.07.021
Reference: [11] Leung, M. K., Young, T., Fung, M. K.: The entry and exit decisions of foreign banks in Hong Kong.Manag. Decis. Econ. 29 (2008), 503-512. 10.1002/mde.1414
Reference: [12] Levendorskii, S.: Perpetual American options and real options under mean-reverting processes.SSRN (2005), 27 pages. 10.2139/ssrn.714321
Reference: [13] Lumley, R. R., Zervos, M.: A model for investments in the natural resource industry with switching costs.Math. Oper. Res. 26 (2001), 637-653. Zbl 1082.90537, MR 1870738, 10.1287/moor.26.4.637.10008
Reference: [14] Øksendal, B.: Optimal stopping with delayed information.Stoch. Dyn. 5 (2005), 271-280. Zbl 1089.60027, MR 2147288, 10.1142/S0219493705001419
Reference: [15] Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions.Universitext, Springer, Berlin (2007). Zbl 1116.93004, MR 2322248, 10.1007/978-3-540-69826-5
Reference: [16] Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications.Stochastic Modelling and Applied Probability 61, Springer, Berlin (2009). Zbl 1165.93039, MR 2533355, 10.1007/978-3-540-89500-8
Reference: [17] Pradhan, N. C., Leung, P.: Modeling entry, stay, and exit decisions of the longline fishers in Hawaii.Marine Policy 28 (2004), 311-324. 10.1016/j.marpol.2003.09.005
Reference: [18] Shirakawa, H.: Evaluation of investment opportunity under entry and exit decisions.RIMS Kokyuroku 987 (1997), 107-124. Zbl 0936.91033, MR 1601586
Reference: [19] Sø{d}al, S.: Entry and exit decisions based on a discount factor approach.J. Econ. Dyn. Control 30 (2006), 1963-1986. Zbl 1162.91385, MR 2273299, 10.1016/j.jedc.2005.06.011
Reference: [20] Tsekrekos, A. E.: The effect of mean reversion on entry and exit decisions under uncertainty.J. Econ. Dyn. Control 34 (2010), 725-742. Zbl 1202.91340, MR 2607510, 10.1016/j.jedc.2009.10.015
Reference: [21] Wang, H.: A sequential entry problem with forced exits.Math. Oper. Res. 30 (2005), 501-520. Zbl 1082.60036, MR 2142046, 10.1287/moor.1040.0141
Reference: [22] Zhang, Y.: Entry and exit decisions with linear costs under uncertainty.Stochastics 87 (2015), 209-234. Zbl 1351.60052, MR 3316809, 10.1080/17442508.2014.939976
.

Files

Files Size Format View
AplMat_63-2018-4_2.pdf 358.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo