Previous |  Up |  Next

Article

Title: Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications (English)
Author: Boussandel, Sahbi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 4
Year: 2018
Pages: 423-437
Summary lang: English
.
Category: math
.
Summary: We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method. (English)
Keyword: existence
Keyword: anti-periodic boundary condition
Keyword: Schaefer fixed-point theorem
Keyword: continuity method
Keyword: diffusion equation
MSC: 35K10
MSC: 35K20
MSC: 35K55
MSC: 35K57
MSC: 35K59
MSC: 35K90
MSC: 35K92
MSC: 47J35
idZBL: Zbl 06945740
idMR: MR3842961
DOI: 10.21136/AM.2018.0233-17
.
Date available: 2018-07-30T11:28:58Z
Last updated: 2020-09-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147319
.
Reference: [1] Aizicovici, S., McKibben, M., Reich, S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. Zbl 0977.34061, MR 1790104, 10.1016/S0362-546X(99)00192-3
Reference: [2] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems.J. Differ. Equations 250 (2011), 929-948. Zbl 1209.47020, MR 2737819, 10.1016/j.jde.2010.09.009
Reference: [3] Chen, Y.: Anti-periodic solutions for semilinear evolution equations.J. Math. Anal. Appl. 315 (2006), 337-348. Zbl 1100.34046, MR 2196551, 10.1016/j.jmaa.2005.08.001
Reference: [4] Chen, Y., Cho, Y. J., Jung, J. S.: Antiperiodic solutions for semilinear evolution equations.Math. Comput. Modelling 40 (2004), 1123-1130. Zbl 1074.34058, MR 2113840, 10.1016/j.mcm.2003.06.007
Reference: [5] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for fully nonlinear first-order differential equations.Math. Comput. Modelling 46 (2007), 1183-1190. Zbl 1142.34313, MR 2376702, 10.1016/j.mcm.2006.12.006
Reference: [6] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for evolution equations associated with maximal monotone mappings.Appl. Math. Lett. 24 (2011), 302-307. Zbl 1215.34069, MR 2741034, 10.1016/j.aml.2010.10.010
Reference: [7] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for evolution equations associated with monotone type mappings.Appl. Math. Lett. 23 (2010), 1320-1325. Zbl 1208.34098, MR 2718504, 10.1016/j.aml.2010.06.022
Reference: [8] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for semilinear evolution equations in Banach spaces.J. Appl. Math. Comput. 38 (2012), 63-70. Zbl 1302.34097, MR 2886666, 10.1007/s12190-010-0463-y
Reference: [9] Chen, Y., Wang, X., Xu, H.: Anti-periodic solutions for semilinear evolution equations.J. Math. Anal. Appl. 273 (2002), 627-636. Zbl 1055.34113, MR 1932511, 10.1016/S0022-247X(02)00288-3
Reference: [10] Chill, R., Fašangová, E.: Gradient Systems. Lecture Notes of the 13th International Internet Seminar.Matfyzpress, Praha (2010).
Reference: [11] Haraux, A.: Anti-periodic solutions of some nonlinear evolution equations.Manuscr. Math. 63 (1989), 479-505. Zbl 0684.35010, MR 0991267, 10.1007/BF01171760
Reference: [12] Okochi, H.: On the existence of periodic solutions to nonlinear abstract parabolic equations.J. Math. Soc. Japan 40 (1988), 541-553. Zbl 0679.35046, MR 0945351, 10.2969/jmsj/04030541
Reference: [13] Okochi, H.: On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators.J. Funct. Anal. 91 (1990), 246-258. Zbl 0735.35071, MR 1058971, 10.1016/0022-1236(90)90143-9
Reference: [14] Okochi, H.: On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains.Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. Zbl 0715.35091, MR 1049120, 10.1016/0362-546X(90)90105-P
Reference: [15] Souplet, Ph.: An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations.C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041 French. Zbl 0809.35036, MR 1305673
Reference: [16] Souplet, Ph.: Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations.Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. Zbl 0892.35078, MR 1491628, 10.1016/S0362-546X(97)00477-X
Reference: [17] Zhenhai, L.: Anti-periodic solutions to nonlinear evolution equations.J. Funct. Anal. 258 (2010), 2026-2033. Zbl 1184.35184, MR 2578462, 10.1016/j.jfa.2009.11.018
.

Files

Files Size Format View
AplMat_63-2018-4_3.pdf 295.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo