Title:
|
Note on a conjecture for the sum of signless Laplacian eigenvalues (English) |
Author:
|
Chen, Xiaodan |
Author:
|
Hao, Guoliang |
Author:
|
Jin, Dequan |
Author:
|
Li, Jingjian |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
3 |
Year:
|
2018 |
Pages:
|
601-610 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\leq e(G)+{k+1 \choose 2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs. (English) |
Keyword:
|
sum of signless Laplacian eigenvalues |
Keyword:
|
upper bound |
Keyword:
|
clique number |
Keyword:
|
girth |
MSC:
|
05C50 |
MSC:
|
15A18 |
idZBL:
|
Zbl 06986959 |
idMR:
|
MR3851878 |
DOI:
|
10.21136/CMJ.2018.0548-16 |
. |
Date available:
|
2018-08-09T13:08:55Z |
Last updated:
|
2020-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147355 |
. |
Reference:
|
[1] Ashraf, F., Omidi, G. R., Tayfeh-Rezaie, B.: On the sum of signless Laplacian eigenvalues of a graph.Linear Algebra Appl. 438 (2013), 4539-4546. Zbl 1282.05087, MR 3034549, 10.1016/j.laa.2013.01.023 |
Reference:
|
[2] Bai, H.: The Grone-Merris conjecture.Trans. Am. Math. Soc. 363 (2011), 4463-4474. Zbl 1258.05066, MR 2792996, 10.1090/S0002-9947-2011-05393-6 |
Reference:
|
[3] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext, Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6 |
Reference:
|
[4] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518 |
Reference:
|
[5] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 436 (2012), 3672-3683. Zbl 1241.05074, MR 2900744, 10.1016/j.laa.2012.01.007 |
Reference:
|
[6] Feng, L., Yu, G.: On three conjectures involving the signless Laplacian spectral radius of graphs.Publ. Inst. Math., Nouv. Sér. 85 (2009), 35-38. Zbl 1265.05365, MR 2536687, 10.2298/PIM0999035F |
Reference:
|
[7] Fritscher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree.Linear Algebra Appl. 435 (2011), 371-399. Zbl 1226.05154, MR 2782788, 10.1016/j.laa.2011.01.036 |
Reference:
|
[8] Ganie, H. A., Alghamdi, A. M., Pirzada, S.: On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture.Linear Algebra Appl. 501 (2016), 376-389. Zbl 1334.05080, MR 3485073, 10.1016/j.laa.2016.03.034 |
Reference:
|
[9] Grone, R., Merris, R.: The Laplacian spectrum of a graph II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653 |
Reference:
|
[10] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 432 (2010), 2214-2221. Zbl 1218.05094, MR 2599854, 10.1016/j.laa.2009.03.038 |
Reference:
|
[11] Rocha, I., Trevisan, V.: Bounding the sum of the largest Laplacian eigenvalues of graphs.Discrete Appl. Math. 170 (2014), 95-103. Zbl 1288.05167, MR 3176708, 10.1016/j.dam.2014.01.023 |
Reference:
|
[12] Wang, S., Huang, Y., Liu, B.: On a conjecture for the sum of Laplacian eigenvalues.Math. Comput. Modelling 56 (2012), 60-68. Zbl 1255.05118, MR 2935294, 10.1016/j.mcm.2011.12.047 |
Reference:
|
[13] Yang, J., You, L.: On a conjecture for the signless Laplacian eigenvalues.Linear Algebra Appl. 446 (2014), 115-132. Zbl 1292.05182, MR 3163132, 10.1016/j.laa.2013.12.032 |
. |