Previous |  Up |  Next

Article

Title: Remarks on local Lie algebras of pairs of functions (English)
Author: Janyška, Josef
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 687-709
Summary lang: English
.
Category: math
.
Summary: Starting by the famous paper by Kirillov, local Lie algebras of functions over smooth manifolds were studied very intensively by mathematicians and physicists. In the present paper we study local Lie algebras of pairs of functions which generate infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds. (English)
Keyword: almost-cosymplectic-contact structure
Keyword: almost-coPoisson-Jacobi structure
Keyword: infinitesimal symmetry
Keyword: local Lie algebra
MSC: 17B66
MSC: 53B99
MSC: 53C15
idZBL: Zbl 06986966
idMR: MR3851885
DOI: 10.21136/CMJ.2017.0626-16
.
Date available: 2018-08-09T13:11:41Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147362
.
Reference: [1] León, M. de, Tuynman, G. M.: A universal model for cosymplectic manifolds.J. Geom. Phys. 20 (1996), 77-86. Zbl 0861.53026, MR 1407405, 10.1016/0393-0440(96)00047-2
Reference: [2] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity.AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics (2012), 135-140. 10.1063/1.4733369
Reference: [3] Janyška, J.: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle.Arch. Math., Brno 50 (2014), 297-316. Zbl 1340.70017, MR 3303779, 10.5817/AM2014-5-297
Reference: [4] Janyška, J.: Relations between constants of motion and conserved functions.Arch. Math., Brno 51 (2015), 297-313. Zbl 06537732, MR 3449110, 10.5817/AM2015-5-297
Reference: [5] Janyška, J.: On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures.Arch. Math., Brno 52 (2016), 325-339. Zbl 06674908, MR 3610867, 10.5817/AM2016-5-325
Reference: [6] Janyška, J., Modugno, M.: Graded Lie algebra of Hermitian tangent valued forms.J. Math. Pures Appl. (9) 85 (2006), 687-697. Zbl 1113.53020, MR 2229665, 10.1016/j.matpur.2005.11.004
Reference: [7] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space.Int. J. Geom. Methods Mod. Phys. 5 (2008), 699-754. Zbl 1116.53008, MR 2445392, 10.1142/S021988780800303X
Reference: [8] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds.J. Math. Pures Appl. (9) 91 (2009), 211-232. Zbl 1163.53051, MR 2498755, 10.1016/j.matpur.2008.09.007
Reference: [9] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space.J. Phys. A, Math. Theor. 45 (2012), Article ID 485205, 28 pages. Zbl 1339.70036, MR 2998421, 10.1088/1751-8113/45/48/485205
Reference: [10] Kirillov, A. A.: Local Lie algebras.Russ. Math. Surv. 31 (1976), 55-75. Zbl 0357.58003, MR 0438390, 10.1070/RM1976v031n04ABEH001556
Reference: [11] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées.J. Math. Pures Appl., IX. Sér. 57 (1978), 453-488 French. Zbl 0407.53025, MR 0524629
Reference: [12] Mackenzie, K. C. H.: General Theory of Lie Groupoids and Lie Algebroids.London Mathematical Society, Lecture Note Series 213, Cambridge University Press, Cambridge (2005). Zbl 1078.58011, MR 2157566, 10.1017/CBO9781107325883
Reference: [13] Olver, P. J.: Applications of Lie Groups to Differential Equations.Graduate Texts in Mathematics 107, Springer, New York (1986). Zbl 0588.22001, MR 0836734, 10.1007/978-1-4684-0274-2
Reference: [14] Shiga, K.: Cohomology of Lie algebras over a manifold I.J. Math. Soc. Japan 26 (1974), 324-361. Zbl 0273.58002, MR 0368025, 10.2969/jmsj/02620324
Reference: [15] Sommers, P.: On Killing tensors and constants of motion.J. Mathematical Phys. 14 (1973), 787-790. MR 0329558, 10.1063/1.1666395
Reference: [16] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds.Progress in Mathematics 118, Birkhäuser, Basel (1994). Zbl 0810.53019, MR 1269545, 10.1007/978-3-0348-8495-2
.

Files

Files Size Format View
CzechMathJ_68-2018-3_9.pdf 362.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo