Previous |  Up |  Next

Article

Title: On realizability of sign patterns by real polynomials (English)
Author: Kostov, Vladimir
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 853-874
Summary lang: English
.
Category: math
.
Summary: The classical Descartes' rule of signs limits the number of positive roots of a real polynomial in one variable by the number of sign changes in the sequence of its coefficients. One can ask the question which pairs of nonnegative integers $(p,n)$, chosen in accordance with this rule and with some other natural conditions, can be the pairs of numbers of positive and negative roots of a real polynomial with prescribed signs of the coefficients. The paper solves this problem for degree $8$ polynomials. (English)
Keyword: real polynomial in one variable
Keyword: sign pattern
Keyword: Descartes' rule of signs
MSC: 26C10
MSC: 30C15
idZBL: Zbl 06986977
idMR: MR3851896
DOI: 10.21136/CMJ.2018.0163-17
.
Date available: 2018-08-09T13:16:24Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147373
.
Reference: [1] Albouy, A., Fu, Y.: Some remarks about Descartes' rule of signs.Elem. Math. 69 (2014), 186-194. Zbl 1342.12002, MR 3272179, 10.4171/EM/262
Reference: [2] Anderson, B., Jackson, J., Sitharam, M.: Descartes' rule of signs revisited.Am. Math. Mon. 105 (1998), 447-451. Zbl 0913.12001, MR 1622513, 0913.12001
Reference: [3] Forsgård, J., Kostov, V. P., Shapiro, B.: Could René Descartes have known this?.Exp. Math. 24 (2015), 438-448. Zbl 1326.26027, MR 3383475, 10.1080/10586458.2015.1030051
Reference: [4] Grabiner, D. J.: Descartes' rule of signs: another construction.Am. Math. Mon. 106 (1999), 845-856. Zbl 0980.12001, MR 1732666, 10.2307/2589619
Reference: [5] Kostov, V. P.: Topics on Hyperbolic Polynomials in One Variable.Panoramas et Synthèses 33, Société Mathématique de France (SMF), Paris (2011). Zbl 1259.12001, MR 2952044
Reference: [6] Shapiro, B. Z., Khesin, B. A.: Swallowtails and Whitney umbrellas are homeomorphic.J. Algebr. Geom. 1 (1992), 549-560. Zbl 0790.57019, MR 1174901
.

Files

Files Size Format View
CzechMathJ_68-2018-3_20.pdf 373.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo