Previous |  Up |  Next

Article

Keywords:
function space; weak continuity; generalized continuity; quasi-continuous function; pointwise topology
Summary:
Let $X$ be a Baire space, $Y$ be a compact Hausdorff space and $\varphi \colon X \to C_p(Y )$ be a quasi-continuous mapping. For a proximal subset $H$ of $Y \times Y$ we will use topological games $\mathcal {G}_1(H)$ and $\mathcal {G}_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then $\varphi $ is norm continuous on a dense $G_\delta $ subset of $X$. It follows that if $Y$ is Valdivia compact, each quasi-continuous mapping from a Baire space $X$ to $C_p(Y)$ is norm continuous on a dense $G_\delta $ subset of $X$.
References:
[1] Angosto, C., Cascales, B., Namioka, I.: Distances to spaces of Baire one functions. Math. Z. 263 (2009), 103-124. DOI 10.1007/s00209-008-0412-8 | MR 2529490 | Zbl 1173.54007
[2] Bouziad, A.: L'espace de Helly a la propriété de Namioka. C. R. Acad. Sci., Paris, Sér. I 317 (1993), 841-843 French. MR 1246650 | Zbl 0798.54039
[3] Bouziad, A.: Every Čech-analytic Baire semitopological group is a topological group. Proc. Am. Math. Soc. 124 (1996), 953-959. DOI 10.1090/S0002-9939-96-03384-9 | MR 1328341 | Zbl 0857.22001
[4] Choquet, G.: Lectures on Analysis. Vol. 1: Integration and Topological Vector Spaces. Mathematics Lecture Note Series. W. A. Benjamin Inc., New-York (1969). MR 0250011 | Zbl 0181.39601
[5] Christensen, J. P. R.: Joint continuity of separately continuous functions. Proc. Am. Math. Soc. 82 (1981), 455-461. DOI 10.2307/2043960 | MR 0612739 | Zbl 0472.54007
[6] Debs, G.: Pointwise and uniform convergence on a Corson compact space. Topology Appl. 23 (1986), 299-303. DOI 10.1016/0166-8641(85)90047-1 | MR 0858338 | Zbl 0613.54007
[7] Deville, R.: Point convergence and uniform convergence on a compact space. Bull. Pol. Acad. Sci., Math. 37 (1989), 507-515 French. MR 1101913 | Zbl 0759.54002
[8] Deville, R., Godefroy, G.: Some applications of projective resolutions of identity. Proc. Lond. Math. Soc., III. Ser. 67 (1993), 183-199. DOI 10.1112/plms/s3-67.1.183 | MR 1218125 | Zbl 0798.46008
[9] Hansel, G., Troallic, J.-P.: Quasicontinuity and Namioka's theorem. Topology Appl. 46 (1992), 135-149. DOI 10.1016/0166-8641(92)90129-N | MR 1184113 | Zbl 0812.54019
[10] Haydon, R.: Baire trees, bad norms and the Namioka property. Mathematika 42 (1995), 30-42. DOI 10.1112/S0025579300011323 | MR 1346669 | Zbl 0870.46008
[11] Kenderov, P. S., Kortezov, I. S., Moors, W. B.: Norm continuity of weakly continuous mappings into Banach spaces. Topology Appl. 153 (2006), 2745-2759. DOI 10.1016/j.topol.2005.11.007 | MR 2243747 | Zbl 1100.54014
[12] Mirmostafaee, A. K.: Norm continuity of quasi-continuous mappings into {$C_p(X)$} and product spaces. Topology Appl. 157 (2010), 530-535. DOI 10.1016/j.topol.2009.10.010 | MR 2577486 | Zbl 1190.54010
[13] Mirmostafaee, A. K.: Quasi-continuity of horizontally quasi-continuous functions. Real Anal. Exch. 39 (2013-2014), 335-344. DOI 10.14321/realanalexch.39.2.0335 | MR 3365378 | Zbl 1322.54009
[14] Mirmostafaee, A. K.: Continuity of separately continuous mappings. Math. Slovaca 64 (2014), 1019-1026. DOI 10.2478/s12175-014-0255-1 | MR 3255869 | Zbl 1349.54034
[15] Namioka, I.: Separate continuity and joint continuity. Pac. J. Math. 51 (1974), 515-531. DOI 10.2140/pjm.1974.51.515 | MR 0370466 | Zbl 0294.54010
[16] Oxtoby, J. C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics 2. Springer, New York (1971). DOI 10.1007/978-1-4615-9964-7 | MR 0393403 | Zbl 0217.09201
[17] Talagrand, M.: Espaces de Baire et espaces de Namioka. Math. Ann. 270 (1985), 159-164 French. DOI 10.1007/BF01456180 | MR 0771977 | Zbl 0582.54008
Partner of
EuDML logo