Previous |  Up |  Next


Title: More remarks on the intersection ideal ${\mathcal{M}}\cap {\mathcal{N}}$ (English)
Author: Weiss, Tomasz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 3
Year: 2018
Pages: 311-316
Summary lang: English
Category: math
Summary: We prove in ZFC that every ${\mathcal{M}}\cap {\mathcal{N}}$ additive set is ${\mathcal{N}}$ additive, thus we solve Problem 20 from paper [Weiss T., {A note on the intersection ideal ${\mathcal{M}}\cap {\mathcal{N}}$}, Comment. Math. Univ. Carolin. {54} (2013), no. 3, 437-445] in the negative. (English)
Keyword: intersection ideal ${\mathcal{M}}\cap {\mathcal{N}}$
Keyword: null additive set
Keyword: meager additive set
MSC: 03E05
MSC: 03E17
idZBL: Zbl 06940872
idMR: MR3861554
DOI: 10.14712/1213-7243.2015.252
Date available: 2018-09-10T12:08:56Z
Last updated: 2020-10-05
Stable URL:
Reference: [1] Bartoszyński T.: Remarks on small sets of reals.Proc. Amer. Math. Soc 131 (2003), no. 2, 625–630. MR 1933355, 10.1090/S0002-9939-02-06567-X
Reference: [2] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line.A K Peters, Wellesley, 1995. MR 1350295
Reference: [3] Goldstern M., Kellner J., Shelah S., Wohofsky W.: Borel conjecture and dual Borel conjecture.Trans. Amer. Math. Soc. 366 (2014), no. 1, 245–307. MR 3118397, 10.1090/S0002-9947-2013-05783-2
Reference: [4] Orenshtein T., Tsaban B.: Linear $\sigma$-additivity and some applications.Trans. Amer. Math. Soc. 363 (2011), no. 7, 3621–3637. MR 2775821, 10.1090/S0002-9947-2011-05228-1
Reference: [5] Pawlikowski J.: A characterization of strong measure zero sets.Israel J. Math. 93 (1996), 171–183. Zbl 0857.28001, MR 1380640, 10.1007/BF02761100
Reference: [6] Weiss T.: A note on the intersection ideal ${\mathcal{M}}\cap {\mathcal{N}}$.Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437–445. MR 3090421


Files Size Format View
CommentatMathUnivCarolRetro_59-2018-3_4.pdf 241.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo