Previous |  Up |  Next

Article

Keywords:
homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
Summary:
This paper is devoted to the study of the linear parabolic problem $\varepsilon \partial _{t}u_{\varepsilon }( x,t) -\nabla \cdot ( a( {x}/{\varepsilon },{t}/{\varepsilon ^{3}}) \nabla u_{\varepsilon }( x,t)) =f( x,t) $ by means of periodic homogenization. Two interesting phenomena arise as a result of the appearance of the coefficient $\varepsilon $ in front of the time derivative. First, we have an elliptic homogenized problem although the problem studied is parabolic. Secondly, we get a parabolic local problem even though the problem has a different relation between the spatial and temporal scales than those normally giving rise to parabolic local problems. To be able to establish the homogenization result, adapting to the problem we state and prove compactness results for the evolution setting of multiscale and very weak multiscale convergence. In particular, assumptions on the sequence $\{ u_{\varepsilon }\} $ different from the standard setting are used, which means that these results are also of independent interest.
References:
[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[2] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A. 126 (1996), 297-342. DOI 10.1017/S0308210500022757 | MR 1386865 | Zbl 0866.35017
[3] Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. DOI 10.1007/s11565-010-0095-z | MR 2646529 | Zbl 1205.35019
[4] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications 5, North-Holland Publishing, Amsterdam (1978). DOI 10.1016/s0168-2024(08)x7015-8 | MR 0503330 | Zbl 0404.35001
[5] Douanla, H., Woukeng, J. L.: Homogenization of reaction-diffusion equations in fractured porous media. Electron. J. Differ. Equ. 2015 (2015), Paper No. 253, 23 pages. MR 3414107 | Zbl 1336.35046
[6] Flodén, L., Holmbom, A., Lindberg, M. Olsson: A strange term in the homogenization of parabolic equations with two spatial and two temporal scales. J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. DOI 10.1155/2012/643458 | MR 2875184 | Zbl 1242.35030
[7] Flodén, L., Holmbom, A., Olsson, M., Persson, J.: Very weak multiscale convergence. Appl. Math. Lett. 23 (2010), 1170-1173. DOI 10.1016/j.aml.2010.05.005 | MR 2665589 | Zbl 1198.35023
[8] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: A note on parabolic homogenization with a mismatch between the spatial scales. Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. DOI 10.1155/2013/329704 | MR 3111807 | Zbl 1293.35027
[9] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. DOI 10.1155/2014/101685 | MR 3176810
[10] Holmbom, A.: Homogenization of parabolic equations an alternative approach and some corrector-type results. Appl. Math., Praha 42 (1997), 321-343. DOI 10.1023/A:1023049608047 | MR 1467553 | Zbl 0898.35008
[11] Lobkova, T.: Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains. Available at https://arxiv.org/abs/1704.01483 (2017). MR 3950176
[12] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. MR 1912819 | Zbl 1061.35015
[13] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[14] Nguetseng, G.: Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990), 1394-1414. DOI 10.1137/0521078 | MR 1075584 | Zbl 0723.73011
[15] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 968-1004. DOI 10.1016/j.na.2005.12.035 | MR 2288445 | Zbl 1116.35011
[16] Pankov, A.: $G$-Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and Its Applications 422, Kluwer Academic Publishers, Dordrecht (1997). DOI 10.1007/978-94-015-8957-4 | MR 1482803 | Zbl 0883.35001
[17] Paronetto, F.: Homogenization of degenerate elliptic-parabolic equations. Asymptotic Anal. 37 (2004), 21-56. MR 2035361 | Zbl 1052.35025
[18] Persson, J.: Homogenization of Some Selected Elliptic and Parabolic Problems Employing Suitable Generalized Modes of Two-Scale Convergence. Mid Sweden University Licentiate Thesis 45, Department of Engineering and Sustainable Development, Mid Sweden University (2010).
[19] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., Praha 57 (2012), 191-214. DOI 10.1007/s10492-012-0013-z | MR 2984600 | Zbl 1265.35018
[20] Persson, J.: Selected Topics in Homogenization. Mid Sweden University Doctoral Thesis 127, Department of Engineering and Sustainable Development, Mid Sweden University (2012).
[21] Svanstedt, N., Woukeng, J. L.: Periodic homogenization of strongly nonlinear reaction-diffusion equations with large reaction terms. Appl. Anal. 92 (2013), 1357-1378. DOI 10.1080/00036811.2012.678334 | MR 3169106 | Zbl 1271.35006
[22] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators. Springer, New York (1990). DOI 10.1007/978-1-4612-0985-0 | MR 1033497 | Zbl 0684.47028
[23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators. Springer, New York (1990). DOI 10.1007/978-1-4612-0981-2 | MR 1033498 | Zbl 0684.47029
Partner of
EuDML logo