Previous |  Up |  Next

Article

Title: Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales (English)
Author: Johnsen, Pernilla
Author: Lobkova, Tatiana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 5
Year: 2018
Pages: 503-521
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the study of the linear parabolic problem $\varepsilon \partial _{t}u_{\varepsilon }( x,t) -\nabla \cdot ( a( {x}/{\varepsilon },{t}/{\varepsilon ^{3}}) \nabla u_{\varepsilon }( x,t)) =f( x,t) $ by means of periodic homogenization. Two interesting phenomena arise as a result of the appearance of the coefficient $\varepsilon $ in front of the time derivative. First, we have an elliptic homogenized problem although the problem studied is parabolic. Secondly, we get a parabolic local problem even though the problem has a different relation between the spatial and temporal scales than those normally giving rise to parabolic local problems. To be able to establish the homogenization result, adapting to the problem we state and prove compactness results for the evolution setting of multiscale and very weak multiscale convergence. In particular, assumptions on the sequence $\{ u_{\varepsilon }\} $ different from the standard setting are used, which means that these results are also of independent interest. (English)
Keyword: homogenization
Keyword: parabolic problem
Keyword: multiscale convergence
Keyword: very weak multiscale convergence
Keyword: two-scale convergence
MSC: 35B27
MSC: 35K20
idZBL: Zbl 06986923
idMR: MR3870146
DOI: 10.21136/AM.2018.0350-17
.
Date available: 2018-10-23T06:56:35Z
Last updated: 2020-11-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147411
.
Reference: [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation.Proc. R. Soc. Edinb., Sect. A. 126 (1996), 297-342. Zbl 0866.35017, MR 1386865, 10.1017/S0308210500022757
Reference: [3] Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. Zbl 1205.35019, MR 2646529, 10.1007/s11565-010-0095-z
Reference: [4] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.Studies in Mathematics and Its Applications 5, North-Holland Publishing, Amsterdam (1978). Zbl 0404.35001, MR 0503330, 10.1016/s0168-2024(08)x7015-8
Reference: [5] Douanla, H., Woukeng, J. L.: Homogenization of reaction-diffusion equations in fractured porous media.Electron. J. Differ. Equ. 2015 (2015), Paper No. 253, 23 pages. Zbl 1336.35046, MR 3414107
Reference: [6] Flodén, L., Holmbom, A., Lindberg, M. Olsson: A strange term in the homogenization of parabolic equations with two spatial and two temporal scales.J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. Zbl 1242.35030, MR 2875184, 10.1155/2012/643458
Reference: [7] Flodén, L., Holmbom, A., Olsson, M., Persson, J.: Very weak multiscale convergence.Appl. Math. Lett. 23 (2010), 1170-1173. Zbl 1198.35023, MR 2665589, 10.1016/j.aml.2010.05.005
Reference: [8] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: A note on parabolic homogenization with a mismatch between the spatial scales.Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. Zbl 1293.35027, MR 3111807, 10.1155/2013/329704
Reference: [9] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time.J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. MR 3176810, 10.1155/2014/101685
Reference: [10] Holmbom, A.: Homogenization of parabolic equations an alternative approach and some corrector-type results.Appl. Math., Praha 42 (1997), 321-343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047
Reference: [11] Lobkova, T.: Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains.Available at https://arxiv.org/abs/1704.01483 (2017). MR 3950176
Reference: [12] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35-86. Zbl 1061.35015, MR 1912819
Reference: [13] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [14] Nguetseng, G.: Asymptotic analysis for a stiff variational problem arising in mechanics.SIAM J. Math. Anal. 21 (1990), 1394-1414. Zbl 0723.73011, MR 1075584, 10.1137/0521078
Reference: [15] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 968-1004. Zbl 1116.35011, MR 2288445, 10.1016/j.na.2005.12.035
Reference: [16] Pankov, A.: $G$-Convergence and Homogenization of Nonlinear Partial Differential Operators.Mathematics and Its Applications 422, Kluwer Academic Publishers, Dordrecht (1997). Zbl 0883.35001, MR 1482803, 10.1007/978-94-015-8957-4
Reference: [17] Paronetto, F.: Homogenization of degenerate elliptic-parabolic equations.Asymptotic Anal. 37 (2004), 21-56. Zbl 1052.35025, MR 2035361
Reference: [18] Persson, J.: Homogenization of Some Selected Elliptic and Parabolic Problems Employing Suitable Generalized Modes of Two-Scale Convergence.Mid Sweden University Licentiate Thesis 45, Department of Engineering and Sustainable Development, Mid Sweden University (2010).
Reference: [19] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales.Appl. Math., Praha 57 (2012), 191-214. Zbl 1265.35018, MR 2984600, 10.1007/s10492-012-0013-z
Reference: [20] Persson, J.: Selected Topics in Homogenization.Mid Sweden University Doctoral Thesis 127, Department of Engineering and Sustainable Development, Mid Sweden University (2012).
Reference: [21] Svanstedt, N., Woukeng, J. L.: Periodic homogenization of strongly nonlinear reaction-diffusion equations with large reaction terms.Appl. Anal. 92 (2013), 1357-1378. Zbl 1271.35006, MR 3169106, 10.1080/00036811.2012.678334
Reference: [22] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators.Springer, New York (1990). Zbl 0684.47028, MR 1033497, 10.1007/978-1-4612-0985-0
Reference: [23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498, 10.1007/978-1-4612-0981-2
.

Files

Files Size Format View
AplMat_63-2018-5_2.pdf 322.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo