Previous |  Up |  Next

Article

Title: Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions (English)
Author: Boussandel, Sahbi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 5
Year: 2018
Pages: 523-539
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet $p$-Laplace operator. (English)
Keyword: existence of solutions
Keyword: anti-periodic
Keyword: monotone operator
Keyword: maximal monotone operator
Keyword: Schaefer fixed-point theorem
Keyword: monotonicity method
Keyword: diffusion equation
MSC: 35K10
MSC: 35K55
MSC: 35K57
MSC: 35K59
MSC: 35K90
MSC: 47J35
idZBL: Zbl 06986924
idMR: MR3870147
DOI: 10.21136/AM.2018.0136-18
.
Date available: 2018-10-23T06:57:00Z
Last updated: 2020-11-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147412
.
Reference: [1] Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H.: On a class of second-order anti-periodic boundary value problems.J. Math. Anal. Appl. 171 (1992), 301-320. Zbl 0767.34047, MR 1194081, 10.1016/0022-247X(92)90345-E
Reference: [2] Aizicovici, S., McKibben, M., Reich, S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. Zbl 0977.34061, MR 1790104, 10.1016/S0362-546X(99)00192-3
Reference: [3] Aizicovici, S., Pavel, N. H.: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space.J. Funct. Anal. 99 (1991), 387-408. Zbl 0743.34067, MR 1121619, 10.1016/0022-1236(91)90046-8
Reference: [4] Boussandel, S.: Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and applications.Appl. Math., Praha 63 (2018), 423-437. Zbl 06945740, MR 3842961, 10.21136/AM.2018.0233-17
Reference: [5] Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. Am. Math. Soc. 72 (1966), 571-575. Zbl 0138.08202, MR 0190745, 10.1090/S0002-9904-1966-11544-6
Reference: [6] Chen, Y.: Anti-periodic solutions for semilinear evolution equations.J. Math. Anal. Appl. 315 (2006), 337-348. Zbl 1100.34046, MR 2196551, 10.1016/j.jmaa.2005.08.001
Reference: [7] Chen, Y., Cho, Y. J., Jung, J. S.: Antiperiodic solutions for semilinear evolution equations.Math. Comput. Modelling 40 (2004), 1123-1130. Zbl 1074.34058, MR 2113840, 10.1016/j.mcm.2003.06.007
Reference: [8] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for fully nonlinear first-order differential equations.Math. Comput. Modelling 46 (2007), 1183-1190. Zbl 1142.34313, MR 2376702, 10.1016/j.mcm.2006.12.006
Reference: [9] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for evolution equations associated with maximal monotone mappings.Appl. Math. Lett. 24 (2011), 302-307. Zbl 1215.34069, MR 2741034, 10.1016/j.aml.2010.10.010
Reference: [10] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for evolution equations associated with monotone type mappings.Appl. Math. Lett. 23 (2010), 1320-1325. Zbl 1208.34098, MR 2718504, 10.1016/j.aml.2010.06.022
Reference: [11] Chen, Y., O'Regan, D., Agarwal, R. P.: Anti-periodic solutions for semilinear evolution equations in Banach spaces.J. Appl. Math. Comput. 38 (2012), 63-70. Zbl 1302.34097, MR 2886666, 10.1007/s12190-010-0463-y
Reference: [12] Chen, Y., Wang, X., Xu, H.: Anti-periodic solutions for semilinear evolution equations.J. Math. Anal. Appl. 273 (2002), 627-636. Zbl 1055.34113, MR 1932511, 10.1016/S0022-247X(02)00288-3
Reference: [13] Drábek, P., Milota, J.: Methods of Nonlinear Analysis. Applications to Differential Equations.Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, Basel (2007). Zbl 1176.35002, MR 2323436, 10.1007/978-3-0348-0387-8
Reference: [14] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien 38, Akademie, Berlin German (1974). Zbl 0289.47029, MR 0636412, 10.1002/mana.19750672207
Reference: [15] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order.Classics in Mathematic, Springer, Berlin (2001). Zbl 1042.35002, MR 1814364, 10.1007/978-3-642-61798-0
Reference: [16] Haraux, A.: Anti-periodic solutions of some nonlinear evolution equations.Manuscr. Math. 63 (1989), 479-505. Zbl 0684.35010, MR 0991267, 10.1007/BF01171760
Reference: [17] Liu, Y., Liu, X.: New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations.Math. Bohem. 138 (2013), 337-360. Zbl 1289.34168, MR 3231091
Reference: [18] Nakao, M.: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity.J. Math. Anal. Appl. 204 (1996), 754-764. Zbl 0873.35051, MR 1422770, 10.1006/jmaa.1996.0465
Reference: [19] Okochi, H.: On the existence of periodic solutions to nonlinear abstract parabolic equations.J. Math. Soc. Japan 40 (1988), 541-553. Zbl 0679.35046, MR 0945351, 10.2969/jmsj/04030541
Reference: [20] Okochi, H.: On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators.J. Funct. Anal. 91 (1990), 246-258. Zbl 0735.35071, MR 1058971, 10.1016/0022-1236(90)90143-9
Reference: [21] Okochi, H.: On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains.Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. Zbl 0715.35091, MR 1049120, 10.1016/0362-546X(90)90105-P
Reference: [22] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. Zbl 0629.46031, MR 0916688, 10.1007/BF01762360
Reference: [23] Souplet, P.: An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations.C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041 French. Zbl 0809.35036, MR 1305673
Reference: [24] Souplet, P.: Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations.Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. Zbl 0892.35078, MR 1491628, 10.1016/S0362-546X(97)00477-X
Reference: [25] Tian, Y., Henderson, J.: Anti-periodic solutions for a gradient system with resonance via a variational approach.Math. Nachr. 286 (2013), 1537-1547. Zbl 1283.34016, MR 3119700, 10.1002/mana.201200110
Reference: [26] Wu, R.: The existence of $T$-anti-periodic solutions.Appl. Math. Lett. 23 (2010), 984-987. Zbl 1202.34081, MR 2659124, 10.1016/j.aml.2010.04.022
Reference: [27] Wu, R., Cong, F., Li, Y.: Anti-periodic solutions for second-order differential equations.Appl. Math. Lett. 23 (2011), 860-863. Zbl 1223.34064, MR 2776149, 10.1016/j.aml.2010.12.031
Reference: [28] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators.Springer, New York (1990). Zbl 0684.47028, MR 1033497, 10.1007/978-1-4612-0985-0
Reference: [29] Zhenhai, L.: Anti-periodic solutions to nonlinear evolution equations.J. Funct. Anal. 258 (2010), 2026-2033. Zbl 1184.35184, MR 2578462, 10.1016/j.jfa.2009.11.018
.

Files

Files Size Format View
AplMat_63-2018-5_3.pdf 315.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo