[2] Brown, J. W., Churchill, R. V.: 
Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. 
MR 0112948[4] Hu, G. D.: 
Stability criteria of linear neutral systems with distributed delays. Kybernetika 47 (2011), 273-284. 
MR 2828577[5] Hu, G. D., Cahlon, B.: 
Estimations on numerically stable step-size for neutral delay differential systems with multiple delays. J. Comput. Appl. Math. 102 (1999), 221-234. 
DOI 10.1016/s0377-0427(98)00215-5 | 
MR 1674027[7] Huang, C., Vandewalle, S.: 
An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Scientific Computing 25 (2004), 1608-1632. 
DOI 10.1137/s1064827502409717 | 
MR 2087328[8] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.
[9] Jury, E. I.: Theory and Application of $z$-Transform Method. John Wiley and Sons, New York 1964.
[11] Kolmanovskii, V. B., Myshkis, A.: 
Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999. 
DOI 10.1007/978-94-017-1965-0 | 
MR 1680144[12] Lambert, J. D.: 
Numerical Methods for Ordinary Differential Systems. John Wiley and Sons, New York 1999. 
MR 1127425[13] Lancaster, P., Tismenetsky, M.: 
The Theory of Matrices with Applications. Academic Press, Orlando 1985. 
MR 0792300[14] Michiels, W., Niculescu, S.: 
Stability, Control and Computation for Time Delay Systems: An Eigenvalue Based Approach. SIAM, Philadelphia 2014. 
DOI 10.1137/1.9781611973631 | 
MR 3288751[15] Tian, H., Kuang, J.: 
The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58 (1995), 171-181. 
DOI 10.1016/0377-0427(93)e0269-r | 
MR 1343634[16] Vyhlidal, T., Zitek, P.: 
Modification of Mikhaylov criterion for neutral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435. 
DOI 10.1109/tac.2009.2029301 | 
MR 2562848