Previous |  Up |  Next

Article

Title: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays (English)
Author: Hu, Guang-Da
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 718-735
Summary lang: English
.
Category: math
.
Summary: In this paper, we are concerned with stability of numerical methods for linear neutral systems with multiple delays. Delay-dependent stability of Runge-Kutta methods is investigated, i. e., for delay-dependently stable systems, we ask what conditions must be imposed on the Runge-Kutta methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. By means of Lagrange interpolation, Runge-Kutta methods can be applied to neutral differential systems with multiple delays. Based on the argument principle, sufficient conditions for delay-dependent stability of Runge-Kutta methods combined with Lagrange interpolation are presented. Numerical examples are given to illustrate the main results. (English)
Keyword: neutral differential systems with multiple delays
Keyword: delay-dependent stability
Keyword: Runge–Kutta method
Keyword: Lagrange interpolation
Keyword: argument principle
MSC: 65L05
MSC: 65L07
MSC: 65L20
idZBL: Zbl 06987030
idMR: MR3863252
DOI: 10.14736/kyb-2018-4-0718
.
Date available: 2018-10-30T14:44:10Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147420
.
Reference: [1] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations..Oxford University Press, Oxford 2003. MR 1997488, 10.1093/acprof:oso/9780198506546.001.0001
Reference: [2] Brown, J. W., Churchill, R. V.: Complex Variables and Applications..McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. MR 0112948
Reference: [3] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations..IMA J. Math. Control Info. 19 (2002), 5-23. MR 1899001, 10.1093/imamci/19.1_and_2.5
Reference: [4] Hu, G. D.: Stability criteria of linear neutral systems with distributed delays..Kybernetika 47 (2011), 273-284. MR 2828577
Reference: [5] Hu, G. D., Cahlon, B.: Estimations on numerically stable step-size for neutral delay differential systems with multiple delays..J. Comput. Appl. Math. 102 (1999), 221-234. MR 1674027, 10.1016/s0377-0427(98)00215-5
Reference: [6] Hu, G. D., Hu, G. D., Zou, X.: Stability of linear neutral systems with multiple delays: boundary criteria..Appl. Math. Comput. 148 (2004), 707-715. MR 2024535, 10.1016/s0096-3003(02)00929-3
Reference: [7] Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays..SIAM J. Scientific Computing 25 (2004), 1608-1632. MR 2087328, 10.1137/s1064827502409717
Reference: [8] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra..Prentice-Hall, Englewood Cliffs 2000.
Reference: [9] Jury, E. I.: Theory and Application of $z$-Transform Method..John Wiley and Sons, New York 1964.
Reference: [10] Kim, A. V., Ivanov, A. V.: Systems with Delays..Scrivener Publishing LLC, Salem, Massachusetts 2015. MR 3496968, 10.1002/9781119117841
Reference: [11] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations..Kluwer Academic Publishers, Dordrecht 1999. MR 1680144, 10.1007/978-94-017-1965-0
Reference: [12] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems..John Wiley and Sons, New York 1999. MR 1127425
Reference: [13] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications..Academic Press, Orlando 1985. MR 0792300
Reference: [14] Michiels, W., Niculescu, S.: Stability, Control and Computation for Time Delay Systems: An Eigenvalue Based Approach..SIAM, Philadelphia 2014. MR 3288751, 10.1137/1.9781611973631
Reference: [15] Tian, H., Kuang, J.: The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms..J. Comput. Appl. Math. 58 (1995), 171-181. MR 1343634, 10.1016/0377-0427(93)e0269-r
Reference: [16] Vyhlidal, T., Zitek, P.: Modification of Mikhaylov criterion for neutral time-delay systems..IEEE Trans. Automat. Control 54 (2009), 2430-2435. MR 2562848, 10.1109/tac.2009.2029301
Reference: [17] Wang, W.: Nonlinear stability of one-leg methods for neutral Volterra delay-integro-differential equations..Math. Comput. Simul. 97 (2014), 147-161. MR 3137913, 10.1016/j.matcom.2013.08.004
.

Files

Files Size Format View
Kybernetika_54-2018-4_5.pdf 655.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo