Previous |  Up |  Next

Article

Title: Realization of nonlinear input-output equations in controller canonical form (English)
Author: Kaldmäe, Arvo
Author: Kotta, Ülle
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 736-747
Summary lang: English
.
Category: math
.
Summary: In this paper necessary and sufficient conditions are given which guarantee that there exists a realization of a set of nonlinear higher order differential input-output equations in the controller canonical form. Two cases are studied, corresponding respectively to linear and nonlinear output functions. The conditions are formulated in terms of certain sequence of vector spaces of differential 1-forms. The proofs suggest how to construct the transformations, necessary to obtain the specific state space realizations. Multiple examples are added, which describe different scenarios. (English)
Keyword: realization
Keyword: nonlinear systems
Keyword: algebraic methods
MSC: 93B11
MSC: 93B25
MSC: 93C10
idZBL: Zbl 06987031
idMR: MR3863253
DOI: 10.14736/kyb-2018-4-0736
.
Date available: 2018-10-30T14:45:47Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147421
.
Reference: [1] Aström, K. J., Murray, R. M.: Feedback Systems: An Introduction for Scientists and Engineers..Princeton University Press, 2008. MR 2400446, 10.1086/596297
Reference: [2] Bartosiewicz, Z., Kotta, Ü., Tõnso, M., Wyrwas, M.: Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales..Math. Control Relat. Fields 6 (2016), 217-250. MR 3510298, 10.3934/mcrf.2016002
Reference: [3] Belikov, J., Kotta, P., Kotta, Ü., Tõnso, M.: Practical polynomial formulas in MIMO nonlinear realization problem..In: 51st IEEE Conference on Decision and Control, Hawaii 2012, pp. 1253-1258. 10.1109/cdc.2012.6427109
Reference: [4] Belikov, J., Kotta, Ü., Tõnso, M.: Adjoint polynomial formulas for nonlinear state-space realization..IEEE Trans. Automat. Control 59 (2014), 256-261. MR 3163347, 10.1109/cdc.2012.6427109
Reference: [5] Belikov, J., Kotta, Ü., Tõnso, M.: Realization of nonlinear MIMO system on homogeneous time scales..Eur. J. Control 23 (2015), 48-54. MR 3339645, 10.1016/j.ejcon.2015.01.006
Reference: [6] Bronstein, M., Petkovsek, M.: An introduction to pseudo-linear algebra..Theoret. Comput. Sci. 157 (1996), 3-33. MR 1383396, 10.1016/0304-3975(95)00173-5
Reference: [7] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications..Springer, London 2007. MR 2305378, 10.1007/978-1-84628-595-0
Reference: [8] Crouch, P. E., Lamnabhi-Lagarrigue, F.: State space realizations of nonlinear systems defined by input-output differential equations..In: Analysis and Optimization of Systems, Springer, Berlin, Heidelberg 1988, pp 138-149. MR 0956266, 10.1007/bfb0042209
Reference: [9] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems..J. Math. Systems, Estimation, Control 5 (1995), 1-27. Zbl 0852.93016, MR 1651823
Reference: [10] Halas, M., Kawano, Y., Moog, C. H., Ohtsuka, T.: Realization of a nonlinear system in the feedforward form: a polynomial approach..In: 19th IFAC World Congress, Cape Town 2014, pp. 9480-9485. 10.3182/20140824-6-za-1003.00990
Reference: [11] Halas, M., Kotta, Ü.: A transfer function approach to the realisation problem of nonlinear systems..Int. J. Control 85 (2012), 320-331. MR 2881269, 10.1080/00207179.2011.651748
Reference: [12] Kolchin, E. R.: Differential Algebra and Algebraic Groups..Academic Press, New York 1973. MR 0568864
Reference: [13] Kotta, Ü., Mullari, T.: Equivalence of realizability conditions for nonlinear control systems..Proc. Est. Acad. Sci. Physics. Math. 55 (2006), 24-42. MR 2211488
Reference: [14] Kotta, Ü., Sadegh, N.: Two approaches for state space realization of NARMA models: bridging the gap..Math. Comput. Model. Dyn. Syst. 8 (2002), 21-32. 10.1076/mcmd.8.1.21.8340
Reference: [15] Morales, V. L., Plestan, F., Glumineau, A.: Linearization by completely generalized input-output injection..Kybernetika 35 (1999), 793-802. MR 1747977
Reference: [16] Plestan, F., Glumineau, A.: Linearization by generalized input-output injection..Systems Control Lett. 31 (1997), 115-128. MR 1461807, 10.1016/s0167-6911(97)00025-x
Reference: [17] Sontag, E. D.: Mathematical Control Theory..Springer-Verlag, New York 1998. Zbl 0945.93001, MR 1640001, 10.1007/978-1-4612-0577-7
Reference: [18] Tõnso, M., Kotta, Ü.: Realization of continuous-time nonlinear input-output equations: polynomial approach..In: 12th International Conference on Computer Aided Systems Theory, Gran Canaria 2009, pp. 633-640. 10.1007/978-3-642-04772-5_82
Reference: [19] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations..Math. Systems Theory 19 (1987), 239-275. MR 0871787, 10.1007/bf01704916
Reference: [20] Zhang, J., Moog, C. H., Xia, X.: Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra..Kybernetika 46 (2010), 799-830. Zbl 1205.93030, MR 2778926
.

Files

Files Size Format View
Kybernetika_54-2018-4_6.pdf 469.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo