Previous |  Up |  Next

Article

Title: Converse theorem for practical stability of nonlinear impulsive systems and applications (English)
Author: Ghanmi, Boulbaba
Author: Dlala, Mohsen
Author: Hammami, Mohamed Ali
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 496-521
Summary lang: English
.
Category: math
.
Summary: The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of this paper is a converse Lyapunov Theorem for practical asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on practical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive systems are established. Finally, some examples are given to show the effectiveness of the derived results. (English)
Keyword: converse Lyapunov theorem
Keyword: practical asymptotic stability
Keyword: impulsive systems
Keyword: cascade systems
Keyword: perturbed systems
MSC: 34A37
MSC: 34D20
idZBL: Zbl 06987019
idMR: MR3844829
DOI: 10.14736/kyb-2018-3-0496
.
Date available: 2018-11-02T10:10:50Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147433
.
Reference: [1] Bacciotti, A., Rosier, L.: Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems..Math. Control Signals Systems 11 (1998), 101-128. MR 1628047, 10.1007/bf02741887
Reference: [2] Bainov, D. D., Simeonov, P. S.: Systems with Impulse Effect: Stability, Theory, and Applications..Ellis Horwood, Chichester 1989. MR 1010418
Reference: [3] Benabdallah, A., Ellouze, I., Hammami, M. A.: Practical stability of nonlinear time-varying cascade systems..J. Dynamical Control Systems 15 (2009), 45-62. MR 2475660, 10.1007/s10883-008-9057-5
Reference: [4] Benabdallah, A., Dlala, M., Hammami, M. A.: A new Lyapunov function for stability of time-varying nonlinear perturbed systems..Systems Control Lett. 56 (2007), 179-187. MR 2296644, 10.1016/j.sysconle.2006.08.009
Reference: [5] Hamed, B. Ben, Ellouze, I., Hammami, M. A.: Practical uniform stability of nonlinear differential delay equations..Mediterranean J. Math. 8 (2011), 603-616. MR 2860688, 10.1007/s00009-010-0083-7
Reference: [6] Hamed, B. Ben, Hammami, M. .A: Practical stabilization of a class of uncertain time-varying nonlinear delay systems..J. Control Theory Appl. 7 (2009), 175-180. MR 2526947, 10.1007/s11768-009-8017-2
Reference: [7] Cai, C., Teel, A., Goebel, R.: Smooth Lyapunov functions for hybrid systems, Part I: Existence is equivalent to robustness..IEEE Trans. Automat. Control 52 (2007), 7, 1264-1277. MR 2332751, 10.1109/tac.2007.900829
Reference: [8] Corless, M.: Guaranteed rates of exponential convergence for uncertain systems..J. Optim. Theory Appl. 64 (1990), 481-494. MR 1043736, 10.1007/bf00939420
Reference: [9] Dlala, M., Ghanmi, B., Hammami, M. A: Exponential practical stability of nonlinear impulsive systems: converse theorem and applications..Dynamics Continuous Discrete Impulsive Systems 21 (2014), 37-64. MR 3202437
Reference: [10] Dlala, M., Hammami, M. A.: Uniform exponential practical stability of impulsive perturbed systems..J. Dynamical Control Systems 13 (2007), 373-386. MR 2337283, 10.1007/s10883-007-9020-x
Reference: [11] Giesl, P., Hafstein, S.: Review on computational methods for Lyapunov functions..Discrete Continuous Dynamical Systems: Series B 20 (2015), 2291-2331. MR 3423237, 10.3934/dcdsb.2015.20.2291
Reference: [12] Gordon, S. P.: On converse to the stability theorems for difference equations..SIAM J. Control Optim. 10 (1972), 76-81. MR 0318707, 10.1137/0310007
Reference: [13] Hahn, W.: Stability of Motion..Springer-Verlag, 1967. Zbl 0189.38503, MR 0223668, 10.1007/978-3-642-50085-5
Reference: [14] Isidori, A.: Nonlinear Control Systems. Second edition..Springer-Verlag, 1989. MR 1015932, 10.1007/978-3-662-02581-9
Reference: [15] Kellett, C.: Converse Theorems in lyapunov's second method..Discrete Continuous Dynamical Systems: Series B 20 (2015), 2333-2360. MR 3423238, 10.3934/dcdsb.2015.20.2333
Reference: [16] Jiang, Z. P., Teel, A. R., Praly, L.: Small gain theorem for ISS systems and applications..Math. Control, Signals Systems 7 (1995), 95-120. MR 1359023, 10.1007/bf01211469
Reference: [17] Wang, Y.: A converse Lyapunov theorem for discrete-time systems with disturbances..Systems Control Lett, 45 (2002), 49-58. MR 2010491, 10.1016/s0167-6911(01)00164-5
Reference: [18] Khalil, H. K.: Nonlinear Systems. Third edition..Macmillan Publishing Company, 2002. MR 1201326
Reference: [19] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems..World Scientific, Singapore 1990. MR 1089428, 10.1142/1192
Reference: [20] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics..Singapore and Teaneck, World Scientific, NJ 1989. MR 1082551, 10.1142/0906
Reference: [21] LaSalle, J. P., Lefschetz, S.: Stability by Lyapunov's Direct Method with Applications..Academic Press, New York 1961. MR 0132876, 10.1002/zamm.19620421022
Reference: [22] Lin, Y., Sontag, E. D., Wang, Y.: A smooth converse Lyapunov theorem for robust stability..SIAM J. Control Optim. 34 (1996), 124-160. MR 1372908, 10.1137/s0363012993259981
Reference: [23] Mancilla-Aguilar, J. L., Garcia, R. A.: A converse Lyapunov theorem for nonlinear switch systems..Systems Control Lett. 41 (2000), 67-71. MR 1827722, 10.1016/s0167-6911(00)00040-2
Reference: [24] Panteley, E., Loria, A.: On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade..Systems Control Lett. 33 (1998), 131-138. MR 1607815, 10.1016/s0167-6911(97)00119-9
Reference: [25] Pradalier, C., Siegwart, R., Hirzinger, G.: Robotics Research..Springer-Verlag, Berlin 2011. 10.1007/978-3-642-19457-3
Reference: [26] Spong, M. W., Vidyasagar, M.: Robot Dynamics and Control..John Wiley and Sons, Inc, New York 1989.
Reference: [27] Spong, M. W.: The control of underactuated mechanical systems..In: First International Conference on Mecatronics, Mexico City 1994.
Reference: [28] Tsinias, J.: A converse Lyapunov theorem for nonuniform in time, global exponential robust stability..Systems Control Lett. 44 (2001), 373-384. MR 2021956, 10.1007/978-3-642-19457-3
Reference: [29] Yang, X.-S.: Existence of unbounded solutions of time varying systems and failure of global asymptotic stability in discrete-time cascade systems..IMA J. Math. Control Inform. 22 (2005), 80-87. MR 2122276, 10.1093/imamci/dni006
Reference: [30] Yang, T.: Impulsive Control Theory..Springer, 2001. Zbl 0996.93003, MR 1850661, 10.1007/3-540-47710-1
Reference: [31] Yoshizawa, T.: Stability Theory by Lyapunov's Second Method..Mathematical Society of Japan, 1966. MR 0208086
Reference: [32] Zubov, V. I.: Methods of A. M. Lyapunov and their Application..P. Noordhoff Ltd, Groningen 1964; translated from the Russian edition of 1957. MR 0179428
.

Files

Files Size Format View
Kybernetika_54-2018-3_5.pdf 846.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo