Previous |  Up |  Next


Title: Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem (English)
Author: Bandura, Andriy
Author: Petrechko, Nataliia
Author: Skaskiv, Oleh
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 4
Year: 2018
Pages: 339-354
Summary lang: English
Category: math
Summary: We generalize some criteria of boundedness of $\mathbf {L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman's theorem). (English)
Keyword: analytic function
Keyword: bidisc
Keyword: bounded ${\mathbf L}$-index in joint variables
Keyword: maximum modulus
Keyword: partial derivative
Keyword: Cauchy's integral formula
MSC: 30D60
MSC: 32A10
MSC: 32A17
MSC: 32A30
idZBL: Zbl 06997370
idMR: MR3895260
DOI: 10.21136/MB.2017.0110-16
Date available: 2018-11-29T09:22:08Z
Last updated: 2020-07-01
Stable URL:
Reference: [1] Bandura, A.: New criteria of boundedness of L-index in joint variables for entire functions.Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 58-67 Ukrainian. Zbl 06742099
Reference: [2] Bandura, A. I., Bordulyak, M. T., Skaskiv, O. B.: Sufficient conditions of boundedness of L-index in joint variables.Mat. Stud. 45 (2016), 12-26. Zbl 1353.30030, MR 3561322, 10.15330/ms.45.1.12-26
Reference: [3] Bandura, A. I., Skaskiv, O. B.: Entire Functions of Several Variables of Bounded Index.Chyslo, Lviv (2015). Zbl 1342.32001, MR 3725018
Reference: [4] Bandura, A. I., Skaskiv, O. B.: Analytic in the unit ball functions of bounded $L$-index in direction.Avaible at MR 3702166
Reference: [5] Bandura, A. I., Petrechko, N. V., Skaskiv, O. B.: Analytic functions in a polydisc of bounded L-index in joint variables.Mat. Stud. 46 (2016), 72-80. Zbl 1373.30043, MR 3649050, 10.15330/ms.46.1.72-80
Reference: [6] Bordulyak, M. T.: The space of entire functions in ${\Bbb C}^n$ of bounded $L$-index.Mat. Stud. 4 (1995), 53-58. Zbl 1023.32500, MR 1692641
Reference: [7] Bordulyak, M. T., Sheremeta, M. M.: Boundedness of the $L$-index of an entire function of several variables.Dopov./Dokl. Akad. Nauk Ukraï ni 9 (1993), 10-13 Ukrainian. MR 1300779
Reference: [8] Krishna, J. Gopala, Shah, S. M.: Functions of bounded indices in one and several complex variables.Math. Essays dedicated to A. J. Macintyre Ohio Univ. Press, Athens, Ohio (1970), 223-235. Zbl 0205.09302, MR 0271345
Reference: [9] Hayman, W. K.: Differential inequalities and local valency.Pac. J. Math. 44 (1973), 117-137. Zbl 0248.30026, MR 0316693, 10.2140/pjm.1973.44.117
Reference: [10] Kushnir, V. O., Sheremeta, M. M.: Analytic functions of bounded $l$-index.Mat. Stud. 12 (1999), 59-66. Zbl 0948.30031, MR 1737831
Reference: [11] Lepson, B.: Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index.Entire Funct. and Relat. Parts of Anal., La Jolla, Calif. 1966 Proc. Sympos. Pure Math. 11, AMS, Providence, Rhode Island (1968), 298-307. Zbl 0199.12902, MR 0237788
Reference: [12] Nuray, F., Patterson, R. F.: Multivalence of bivariate functions of bounded index.Matematiche 70 (2015), 225-233. Zbl 1342.32006, MR 3437188, 10.4418/2015.70.2.14
Reference: [13] Salmassi, M.: Functions of bounded indices in several variables.Indian J. Math. 31 (1989), 249-257. Zbl 0699.32004, MR 1042643
Reference: [14] Sheremeta, M.: Analytic Functions of Bounded Index.Mathematical Studies Monograph Series 6. VNTL Publishers, Lviv (1999). Zbl 0980.30020, MR 1751042
Reference: [15] Strochyk, S. N., Sheremeta, M. M.: Analytic in the unit disc functions of bounded index.Dopov./Dokl. Akad. Nauk Ukraï ni 1 (1993), 19-22 Ukrainian. Zbl 0783.30025, MR 1222997


Files Size Format View
MathBohem_143-2018-4_2.pdf 315.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo