Previous |  Up |  Next

Article

Title: Annihilator-preserving congruence relations in distributive nearlattices (English)
Author: Calomino, Ismael
Author: Celani, Sergio
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 4
Year: 2018
Pages: 391-407
Summary lang: English
.
Category: math
.
Summary: In this note we give some new characterizations of distributivity of a nearlattice and we study annihilator-preserving congruence relations. (English)
Keyword: distributive nearlattice
Keyword: ideal
Keyword: filter
Keyword: congruence
Keyword: annihilator
MSC: 03G10
MSC: 06A12
MSC: 06D50
idZBL: Zbl 06997373
idMR: MR3895263
DOI: 10.21136/MB.2018.0030-17
.
Date available: 2018-11-29T09:24:36Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147476
.
Reference: [1] Abbott, J. C.: Semi-boolean algebra.Mat. Vesn., N. Ser. 19 (1967), 177-198. Zbl 0153.02704, MR 0239957
Reference: [2] Araújo, J., Kinyon, M.: Independent axiom systems for nearlattices.Czech. Math. J. 61 (2011), 975-992. Zbl 1249.06003, MR 2886250, 10.1007/s10587-011-0062-6
Reference: [3] Calomino, I., Celani, S.: A note on annihilators in distributive nearlattices.Miskolc Math. Notes 16 (2015), 65-78. Zbl 1340.06007, MR 3384588, 10.18514/MMN.2015.1325
Reference: [4] Celani, S. A.: Topological representation of distributive semilattices.Sci. Math. Jpn. 58 (2003), 55-65. Zbl 1041.06002, MR 1987817
Reference: [5] Celani, S. A.: Remarks on annihilators preserving congruence relations.Math. Slovaca 62 (2012), 389-398. Zbl 1312.06002, MR 2915604, 10.2478/s12175-012-0016-y
Reference: [6] Celani, S. A.: Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices.Open Math. 13 (2015), 165-177. Zbl 1334.06005, MR 3314172, 10.1515/math-2015-0016
Reference: [7] Celani, S., Calomino, I.: Stone style duality for distributive nearlattices.Algebra Universalis 71 (2014), 127-153. Zbl 1301.06030, MR 3183387, 10.1007/s00012-014-0269-0
Reference: [8] Chajda, I., Halaš, R.: An example of a congruence distributive variety having no near-unanimity term.Acta Univ. M. Belii, Ser. Math. 13 (2006), 29-31. Zbl 1132.08002, MR 2353310
Reference: [9] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures.Research and Exposition in Mathematics 30. Heldermann Verlag, Lemgo (2007). Zbl 1117.06001, MR 2326262
Reference: [10] Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattices.Acta Univ. Palacki. Olomuc., Fac. Rerum Natur. Math. 46 (2007), 25-33. Zbl 1147.06002, MR 2387490
Reference: [11] Chajda, I., Kolařík, M.: Nearlattices.Discrete Math. 308 (2008), 4906-4913. Zbl 1151.06004, MR 2446101, 10.1016/j.disc.2007.09.009
Reference: [12] Cornish, W. H.: Normal lattices.J. Aust. Math. Soc. 14 (1972), 200-215. Zbl 0247.06009, MR 0313148, 10.1017/S1446788700010041
Reference: [13] Cornish, W. H.: Quasicomplemented lattices.Commentat. Math. Univ. Carolinae 15 (1974), 501-511. Zbl 0293.06006, MR 0354468
Reference: [14] Cornish, W. H., Hickman, R. C.: Weakly distributive semilattices.Acta Math. Acad. Sci. Hung. 32 (1978), 5-16. Zbl 0497.06005, MR 0551490, 10.1007/BF01902195
Reference: [15] Halaš, R.: Subdirectly irreducible distributive nearlattices.Miskolc Math. Notes 7 (2006), 141-146. Zbl 1120.06003, MR 2310273, 10.18514/MMN.206.140
Reference: [16] Hickman, R.: Join algebras.Commun. Algebra 8 (1980), 1653-1685. Zbl 0436.06003, MR 0585925, 10.1080/00927878008822537
Reference: [17] Janowitz, M. F.: Annihilator preserving congruence relations of lattices.Algebra Univers. 5 (1975), 391-394. Zbl 0333.06005, MR 0392729, 10.1007/BF02485272
Reference: [18] Stone, M. H.: Topological representations of distributive lattices and Brouwerian logics.Čas. Mat. Fys. 67 (1937), 1-25. Zbl 0018.00303
.

Files

Files Size Format View
MathBohem_143-2018-4_5.pdf 338.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo