Title:
|
Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability (English) |
Author:
|
Taş, Emre |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
143 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
419-430 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Our aim is to change classical test functions of Korovkin theorem on modular spaces by using $\mathscr {A}$-summability. (English) |
Keyword:
|
$\mathscr {A}$-summability |
Keyword:
|
modular space |
Keyword:
|
abstract Korovkin theory |
MSC:
|
40C05 |
MSC:
|
41A36 |
idZBL:
|
Zbl 06997375 |
idMR:
|
MR3895265 |
DOI:
|
10.21136/MB.2018.0057-17 |
. |
Date available:
|
2018-11-29T09:25:38Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147478 |
. |
Reference:
|
[1] Altomare, F.: Korovkin-type theorems and approximation by positive linear operators.Surv. Approx. Theory 5 (2010), 92-164. Zbl 1285.41012, MR 2721174 |
Reference:
|
[2] Altomare, F., Diomede, S.: Contractive Korovkin subsets in weighted spaces of continuous functions.Rend. Circ. Mat. Palermo II. Ser. 50 (2001), 547-568. Zbl 1011.46020, MR 1871614, 10.1007/BF02844431 |
Reference:
|
[3] Atlihan, Ö. G., Taş, E.: An abstract version of the Korovkin theorem via $\Cal A$-summation process.Acta Math. Hung. 145 (2015), 360-368. Zbl 1363.41022, MR 3325796, 10.1007/s10474-015-0476-y |
Reference:
|
[4] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Abstract Korovkin-type theorems in modular spaces and applications.Cent. Eur. J. Math. 11 (2013), 1774-1784. Zbl 1283.41018, MR 3080236, 10.2478/s11533-013-0288-7 |
Reference:
|
[5] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Modular filter convergence theorems for abstract sampling type operators.Appl. Anal. 92 (2013), 2404-2423. Zbl 1286.41003, MR 3169171, 10.1080/00036811.2012.738480 |
Reference:
|
[6] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Korovkin-type theorems for modular $\Psi$-$A$-statistical convergence.J. Funct. Spaces 2015 (2015), Article ID 160401, 11 pages. Zbl 1327.46006, MR 3310460, 10.1155/2015/160401 |
Reference:
|
[7] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Triangular $A$-statistical approximation by double sequences of positive linear operators.Result. Math. 68 (2015), 271-291. Zbl 1338.40009, MR 3407558, 10.1007/s00025-015-0433-7 |
Reference:
|
[8] Bardaro, C., Mantellini, I.: Korovkin theorem in modular spaces.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 239-253. Zbl 1181.41035, MR 2377960 |
Reference:
|
[9] Bardaro, C., Mantellini, I.: Multivariate moment type operators: approximation properties in Orlicz spaces.J. Math. Inequal. 2 (2008), 247-259. Zbl 1152.41308, MR 2426828, 10.7153/jmi-02-22 |
Reference:
|
[10] Bardaro, C., Mantellini, I.: A Korovkin theorem in multivariate modular function spaces.J. Funct. Spaces Appl. 7 (2009), 105-120. Zbl 1195.41021, MR 2541228, 10.1155/2009/863153 |
Reference:
|
[11] Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications.De Gruyter Series in Nonlinear Analysis and Applications 9. Walter de Gruyter, Berlin (2003). Zbl 1030.47003, MR 1994699 |
Reference:
|
[12] Bell, H. T.: Order summability and almost convergence.Proc. Am. Math. Soc. 38 (1973), 548-552. Zbl 0259.40003, MR 0310489, 10.2307/2038948 |
Reference:
|
[13] Boccuto, A., Dimitriou, X.: Modular filter convergence theorems for Urysohn integral operators and applications.Acta Math. Sin., Engl. Ser. 29 (2013), 1055-1066. Zbl 1268.41018, MR 3048228, 10.1007/s10114-013-1443-6 |
Reference:
|
[14] Demirci, K., Orhan, S.: Statistical relative approximation on modular spaces.Result. Math. 71 (2017), 1167-1184. MR 3648467, 10.1007/s00025-016-0548-5 |
Reference:
|
[15] Karakuş, S., Demirci, K.: Matrix summability and Korovkin type approximation theorem on modular spaces.Acta Math. Univ. Comen., New Ser. 79 (2010), 281-292. Zbl 1240.41065, MR 2745177 |
Reference:
|
[16] Karakuş, S., Demirci, K., Duman, O.: Statistical approximation by positive linear operators on modular spaces.Positivity 14 (2010), 321-334. Zbl 1193.41014, MR 2657637, 10.1007/s11117-009-0020-9 |
Reference:
|
[17] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210 |
Reference:
|
[18] Musielak, J., Orlicz, W.: On modular spaces.Studia Math. 18 (1959), 49-65. Zbl 0086.08901, MR 0101487, 10.4064/sm-18-1-49-65 |
Reference:
|
[19] Nakano, H.: Modulared Semi-Ordered Linear Spaces.Tokyo Math. Book Series, Vol. 1. Maruzen, Tokyo (1950). Zbl 0041.23401, MR 0038565 |
Reference:
|
[20] Orhan, S., Demirci, K.: Statistical ${\scr A}$-summation process and Korovkin type approximation theorem on modular spaces.Positivity 18 (2014), 669-686. Zbl 1308.41024, MR 3275359, 10.1007/s11117-013-0269-x |
Reference:
|
[21] Sakaoğlu, I., Orhan, C.: Strong summation process in $L_{p}$ spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 86 (2013), 89-94. Zbl 1283.41017, MR 3053558, 10.1016/j.na.2013.03.010 |
. |