Previous |  Up |  Next

Article

Title: Abstract Korovkin type theorems on modular spaces by $\mathscr {A}$-summability (English)
Author: Taş, Emre
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 4
Year: 2018
Pages: 419-430
Summary lang: English
.
Category: math
.
Summary: Our aim is to change classical test functions of Korovkin theorem on modular spaces by using $\mathscr {A}$-summability. (English)
Keyword: $\mathscr {A}$-summability
Keyword: modular space
Keyword: abstract Korovkin theory
MSC: 40C05
MSC: 41A36
idZBL: Zbl 06997375
idMR: MR3895265
DOI: 10.21136/MB.2018.0057-17
.
Date available: 2018-11-29T09:25:38Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147478
.
Reference: [1] Altomare, F.: Korovkin-type theorems and approximation by positive linear operators.Surv. Approx. Theory 5 (2010), 92-164. Zbl 1285.41012, MR 2721174
Reference: [2] Altomare, F., Diomede, S.: Contractive Korovkin subsets in weighted spaces of continuous functions.Rend. Circ. Mat. Palermo II. Ser. 50 (2001), 547-568. Zbl 1011.46020, MR 1871614, 10.1007/BF02844431
Reference: [3] Atlihan, Ö. G., Taş, E.: An abstract version of the Korovkin theorem via $\Cal A$-summation process.Acta Math. Hung. 145 (2015), 360-368. Zbl 1363.41022, MR 3325796, 10.1007/s10474-015-0476-y
Reference: [4] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Abstract Korovkin-type theorems in modular spaces and applications.Cent. Eur. J. Math. 11 (2013), 1774-1784. Zbl 1283.41018, MR 3080236, 10.2478/s11533-013-0288-7
Reference: [5] Bardaro, C., Boccuto, A., Dimitriou, X., Mantellini, I.: Modular filter convergence theorems for abstract sampling type operators.Appl. Anal. 92 (2013), 2404-2423. Zbl 1286.41003, MR 3169171, 10.1080/00036811.2012.738480
Reference: [6] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Korovkin-type theorems for modular $\Psi$-$A$-statistical convergence.J. Funct. Spaces 2015 (2015), Article ID 160401, 11 pages. Zbl 1327.46006, MR 3310460, 10.1155/2015/160401
Reference: [7] Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S.: Triangular $A$-statistical approximation by double sequences of positive linear operators.Result. Math. 68 (2015), 271-291. Zbl 1338.40009, MR 3407558, 10.1007/s00025-015-0433-7
Reference: [8] Bardaro, C., Mantellini, I.: Korovkin theorem in modular spaces.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 239-253. Zbl 1181.41035, MR 2377960
Reference: [9] Bardaro, C., Mantellini, I.: Multivariate moment type operators: approximation properties in Orlicz spaces.J. Math. Inequal. 2 (2008), 247-259. Zbl 1152.41308, MR 2426828, 10.7153/jmi-02-22
Reference: [10] Bardaro, C., Mantellini, I.: A Korovkin theorem in multivariate modular function spaces.J. Funct. Spaces Appl. 7 (2009), 105-120. Zbl 1195.41021, MR 2541228, 10.1155/2009/863153
Reference: [11] Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications.De Gruyter Series in Nonlinear Analysis and Applications 9. Walter de Gruyter, Berlin (2003). Zbl 1030.47003, MR 1994699
Reference: [12] Bell, H. T.: Order summability and almost convergence.Proc. Am. Math. Soc. 38 (1973), 548-552. Zbl 0259.40003, MR 0310489, 10.2307/2038948
Reference: [13] Boccuto, A., Dimitriou, X.: Modular filter convergence theorems for Urysohn integral operators and applications.Acta Math. Sin., Engl. Ser. 29 (2013), 1055-1066. Zbl 1268.41018, MR 3048228, 10.1007/s10114-013-1443-6
Reference: [14] Demirci, K., Orhan, S.: Statistical relative approximation on modular spaces.Result. Math. 71 (2017), 1167-1184. MR 3648467, 10.1007/s00025-016-0548-5
Reference: [15] Karakuş, S., Demirci, K.: Matrix summability and Korovkin type approximation theorem on modular spaces.Acta Math. Univ. Comen., New Ser. 79 (2010), 281-292. Zbl 1240.41065, MR 2745177
Reference: [16] Karakuş, S., Demirci, K., Duman, O.: Statistical approximation by positive linear operators on modular spaces.Positivity 14 (2010), 321-334. Zbl 1193.41014, MR 2657637, 10.1007/s11117-009-0020-9
Reference: [17] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210
Reference: [18] Musielak, J., Orlicz, W.: On modular spaces.Studia Math. 18 (1959), 49-65. Zbl 0086.08901, MR 0101487, 10.4064/sm-18-1-49-65
Reference: [19] Nakano, H.: Modulared Semi-Ordered Linear Spaces.Tokyo Math. Book Series, Vol. 1. Maruzen, Tokyo (1950). Zbl 0041.23401, MR 0038565
Reference: [20] Orhan, S., Demirci, K.: Statistical ${\scr A}$-summation process and Korovkin type approximation theorem on modular spaces.Positivity 18 (2014), 669-686. Zbl 1308.41024, MR 3275359, 10.1007/s11117-013-0269-x
Reference: [21] Sakaoğlu, I., Orhan, C.: Strong summation process in $L_{p}$ spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 86 (2013), 89-94. Zbl 1283.41017, MR 3053558, 10.1016/j.na.2013.03.010
.

Files

Files Size Format View
MathBohem_143-2018-4_7.pdf 280.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo