Previous |  Up |  Next

Article

Title: The affine approach to homogeneous geodesics in homogeneous Finsler spaces (English)
Author: Dušek, Zdeněk
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 257-263
Summary lang: English
.
Category: math
.
Summary: In the recent paper [Yan, Z.: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension, Monatsh. Math. 182,1, 165–171 (2017)], it was claimed that any homogeneous Finsler space of odd dimension admits a homogeneous geodesic through any point. However, the proof contains a serious gap. The situation is a bit delicate, because the statement is correct. In the present paper, the incorrect part in this proof is indicated. Further, it is shown that homogeneous geodesics in homogeneous Finsler spaces can be studied by another method developed in earlier works by the author for homogeneous affine manifolds. This method is adapted for Finsler geometry and the statement is proved correctly. (English)
Keyword: homogeneous space
Keyword: Finsler space
Keyword: Killing vector field
Keyword: homogeneous geodesic
MSC: 53C22
MSC: 53C30
MSC: 53C60
idZBL: Zbl 06997354
idMR: MR3887353
DOI: 10.5817/AM2018-5-257
.
Date available: 2018-12-06T16:12:43Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147503
.
Reference: [1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry.Springer Science+Business Media, New York, 2000. Zbl 0954.53001, MR 1747675
Reference: [2] Deng, S.: Homogeneous Finsler Spaces.Springer Science+Business Media, New York, 2012. MR 2962626
Reference: [3] Dušek, Z.: On the reparametrization of affine homogeneous geodesics.Differential Geometry, Proceedings of the VIII International Colloquium World Scientific (Singapore) (López, J.A. Álvarez, García-Río, E., eds.), 2009, pp. 217–226. MR 2523507
Reference: [4] Dušek, Z.: Existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds.J. Geom. Phys. 60 (2010), 687–689. MR 2608520, 10.1016/j.geomphys.2009.12.015
Reference: [5] Dušek, Z.: The existence of homogeneous geodesics in special homogeneous Finsler spaces.Matematički Vesnik (2018). MR 3895904
Reference: [6] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature.Publ. Math. Debrecen 71 (2007), 245–252. MR 2340046
Reference: [7] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds.Result. Math. 54 (2009), 273–288. MR 2534447, 10.1007/s00025-009-0373-1
Reference: [8] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits.J. High Energy Physics 05, 050 (2005). MR 2155055, 10.1088/1126-6708/2005/05/050
Reference: [9] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds.Geom. Dedicata 81 (2000), 209–214, Erratum: Geom. Dedicata 84, 331–332 (2001). Zbl 0980.53061, MR 1825363, 10.1023/A:1005287907806
Reference: [10] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics.Boll. Un. Mat. Ital. B (7) 5 (1991), 189–246. Zbl 0731.53046, MR 1110676
Reference: [11] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces.J. Geom. Phys. 57 (2007), 1421–1433. MR 2289656, 10.1016/j.geomphys.2006.11.004
Reference: [12] Yan, Z.: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension.Monatsh. Math. 182 (1) (2017), 165–171. MR 3592127, 10.1007/s00605-016-0933-x
Reference: [13] Yan, Z., Huang, L.: On the existence of homogeneous geodesic in homogeneous Finsler space.J. Geom. Phys. 124 (2018), 264–267. MR 3754513, 10.1016/j.geomphys.2017.10.005
.

Files

Files Size Format View
ArchMathRetro_054-2018-5_2.pdf 486.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo