Full entry | *Fulltext not available
(moving wall
24 months)
*
Feedback

functional differential equation; variation-of-constants formula

References:

[1] Afonso, S. M., Bonotto, E. M., Federson, M., Schwabik, Š.: **Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invariance principle for differential systems with impulses at variable times**. J. Differ. Equations 250 (2011), 2969-3001. DOI 10.1016/j.jde.2011.01.019 | MR 2771252 | Zbl 1213.34019

[2] Bonotto, E. M., Federson, M., Muldowney, P.: **A Feynman-Kac solution to a random impulsive equation of Schrödinger type**. Real Anal. Exch. 36 (2011), 107-148. DOI 10.14321/realanalexch.36.1.0107 | MR 3016407 | Zbl 1246.28008

[3] Das, P. C., Sharma, R. R.: **Existence and stability of measure differential equations**. Czech. Math. J. 22 (1972), 145-158. MR 0304815 | Zbl 0241.34070

[4] Federson, M., Schwabik, Š.: **Generalized ODE approach to impulsive retarded functional differential equations**. Differ. Integral Equ. 19 (2006), 1201-1234. MR 2278005 | Zbl 1212.34251

[5] Federson, M., Schwabik, Š.: **Stability for retarded functional differential equations**. Ukr. Mat. Zh. 60 (2008), 107-126 translated in Ukr. Math. J. 60 2008 121-140. DOI 10.1007/s11253-008-0047-2 | MR 2410167 | Zbl 1164.34530

[6] Federson, M., Schwabik, Š.: **A new approach to impulsive retarded differential equations: stability results**. Funct. Differ. Equ. 16 (2009), 583-607. MR 2597466 | Zbl 1200.34097

[7] Federson, M., Táboas, P.: **Topological dynamics of retarded functional differential equations**. J. Differ. Equations 195 (2003), 313-331. DOI 10.1016/S0022-0396(03)00061-5 | MR 2016815 | Zbl 1054.34102

[8] Hale, J. K., Lunel, S. M. Verduyn: **Introduction to Functional-Differential Equations**. Applied Mathematical Sciences 99. Springer, New York (1993). DOI 10.1007/978-1-4612-4342-7 | MR 1243878 | Zbl 0787.34002

[9] Henstock, R.: **Lectures on the Theory of Integration**. Series in Real Analysis 1. World Scientific Publishing, Singapore (1988). MR 0963249 | Zbl 0668.28001

[10] Hönig, C. S.: **Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints**. Mathematics Studies 16. North-Holland Publishing, Amsterdam (1975). MR 0499969 | Zbl 0307.45002

[11] Imaz, C., Vorel, Z.: **Generalized ordinary differential equations in Banach space and applications to functional equations**. Bol. Soc. Mat. Mex., II. Ser 11 (1966), 47-59. MR 0232060 | Zbl 0178.44203

[12] Kurzweil, J.: **Generalized ordinary differential equations and continuous dependence on a parameter**. Czech. Math. J. 7 (1957), 418-448. MR 0111875 | Zbl 0090.30002

[13] Kurzweil, J.: **Generalized ordinary differential equations**. Czech. Math. J. 8 (1958), 360-388. MR 0111878 | Zbl 0094.05804

[14] Kurzweil, J.: **Unicity of solutions of generalized differential equations**. Czech. Math. J. 8 (1958), 502-509. MR 0111880 | Zbl 0094.05901

[15] Kurzweil, J.: **Addition to my paper ``Generalized ordinary differential equations and continuous dependence on a parameter''**. Czech. Math. J. 9 (1959), 564-573. MR 0111882 | Zbl 0094.05902

[16] Kurzweil, J.: **Problems which lead to a generalization of the concept of an ordinary nonlinear differential equation**. Differ. Equ. Appl Publ. House Czechoslovak Acad. Sci., Prague; Academic Press, New York (1963), 65-76. MR 0177173 | Zbl 0151.12501

[17] Monteiro, G. A., Slavík, A.: **Linear measure functional differential equations with infinite delay**. Math. Nachr. 287 (2014), 1363-1382. DOI 10.1002/mana.201300048 | MR 3247022 | Zbl 1305.34108

[18] Muldowney, P.: **The Henstock integral and the Black-Scholes theory of derivative asset pricing**. Real Anal. Exch. 26 (2000), 117-131. MR 1825499 | Zbl 1025.91013

[19] Muldowney, P.: **A Modern Theory of Random Variation. With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration**. John Wiley & Sons, Hoboken (2012). DOI 10.1002/9781118345955 | MR 3087034 | Zbl 1268.60002

[20] Oliva, F., Vorel, Z.: **Functional equations and generalized ordinary differential equations**. Bol. Soc. Mat. Mex., II. Ser. 11 (1966), 40-46. MR 0239227 | Zbl 0178.44204

[21] Schwabik, Š.: **Generalized Ordinary Differential Equations**. Series in Real Analysis 5. World Scientific Publishing, River Edge (1992). MR 1200241 | Zbl 0781.34003

[22] Schwabik, Š.: **Abstract Perron-Stieltjes integral**. Math. Bohem. 121 (1996), 425-447. MR 1428144 | Zbl 0879.28021

[23] Schwabik, Š.: **Linear Stieltjes integral equations in Banach spaces**. Math. Bohem. 124 (1999), 433-457. MR 1722877 | Zbl 0937.34047

[24] Schwabik, Š.: **Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions**. Math. Bohem. 125 (2000), 431-454. MR 1802292 | Zbl 0974.34057

[25] Shanholt, G. A.: **A nonlinear variation-of-constants formula for functional differential equations**. Math. Syst. Theory 6 (1972), 343-352. DOI 10.1007/BF01740726 | MR 0336002 | Zbl 0248.34070

[26] Talvila, E.: **Integrals and Banach spaces for finite order distributions**. Czech. Math. J. 62 (2012), 77-104. DOI 10.1007/s10587-012-0018-5 | MR 2899736 | Zbl 1249.26012

[27] Tvrdý, M.: **Linear integral equations in the space of regulated functions**. Math. Bohem. 123 (1998), 177-212. MR 1673977 | Zbl 0941.45001