Previous |  Up |  Next

Article

Title: Possible isolation number of a matrix over nonnegative integers (English)
Author: Beasley, LeRoy B.
Author: Jun, Young Bae
Author: Song, Seok-Zun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1055-1066
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb Z_+$ be the semiring of all nonnegative integers and $A$ an $m\times n$ matrix over $\mathbb Z_+$. The rank of $A$ is the smallest $k$ such that $A$ can be factored as an $m\times k$ matrix times a $k\times n$ matrix. The isolation number of $A$ is the maximum number of nonzero entries in $A$ such that no two are in any row or any column, and no two are in a $2\times 2$ submatrix of all nonzero entries. We have that the isolation number of $A$ is a lower bound of the rank of $A$. For $A$ with isolation number $k$, we investigate the possible values of the rank of $A$ and the Boolean rank of the support of $A$. So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is $1$ or $2$ only. We also determine a special type of $m \times n$ matrices whose isolation number is $m$. That is, those matrices are permutationally equivalent to a matrix $A$ whose support contains a submatrix of a sum of the identity matrix and a tournament matrix. (English)
Keyword: rank
Keyword: Boolean rank
Keyword: isolated entry
Keyword: isolation number
MSC: 15A03
MSC: 15A23
MSC: 15B34
idZBL: Zbl 07031697
idMR: MR3881896
DOI: 10.21136/CMJ.2018.0068-17
.
Date available: 2018-12-07T06:21:25Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147521
.
Reference: [1] Beasley, L. B.: Isolation number versus Boolean rank.Linear Algebra Appl. 436 (2012), 3469-3474. Zbl 1245.15003, MR 2900729, 10.1016/j.laa.2011.12.013
Reference: [2] Beasley, L. B., Gregory, D. A., Pullman, N. J.: Nonnegative rank-preserving operators.Linear Algebra Appl. 65 (1985), 207-223. Zbl 0561.15002, MR 0774353, 10.1016/0024-3795(85)90098-9
Reference: [3] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate texts in Mathematics 244, Springer, Berlin (2008). Zbl 1134.05001, MR 2368647
Reference: [4] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and Its Applications 39, Cambridge University Press, Cambridge (1991). Zbl 0746.05002, MR 1130611, 10.1017/CBO9781107325708
Reference: [5] Caen, D. de, Gregory, D. A., Pullman, N. J.: The Boolean rank of zero-one matrices.Combinatorics and Computing Proc. 3rd Caribb. Conf., Cave Hill/Barbados (1981), 169-173. Zbl 0496.20052, MR 0657202
Reference: [6] Gregory, D. A., Pullman, N. J., Jones, K. F., Lundgren, J. R.: Biclique coverings of regular bigraphs and minimum semiring ranks of regular matrices.J. Comb. Theory, Ser. B 51 (1991), 73-89. Zbl 0733.05064, MR 1088627, 10.1016/0095-8956(91)90006-6
Reference: [7] Kato, A.: Complexity of the sex-equal stable marriage problem.Japan J. Ind. Appl. Math. 10 (1993), 1-19. Zbl 0782.68060, MR 1208179, 10.1007/BF03167200
Reference: [8] Markowsky, G.: Primes, irreducibles and extremal lattices.Order 9 (1992), 265-290. Zbl 0778.06007, MR 1211380, 10.1007/BF00383950
.

Files

Files Size Format View
CzechMathJ_68-2018-4_12.pdf 293.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo