Previous |  Up |  Next

Article

Title: Arithmetic genus of integral space curves (English)
Author: Sun, Hao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1079-1089
Summary lang: English
.
Category: math
.
Summary: We give an estimation for the arithmetic genus of an integral space curve which is not contained in a surface of degree $k-1$. Our main technique is the Bogomolov-Gieseker type inequality for $\mathbb {P}^3$ proved by Macrì. (English)
Keyword: space curve
Keyword: arithmetic genus
Keyword: Bridgeland stability
Keyword: Bogomolov-Gieseker inequality
MSC: 14F05
MSC: 14H50
idZBL: Zbl 07031699
idMR: MR3881898
DOI: 10.21136/CMJ.2017.0093-17
.
Date available: 2018-12-07T06:22:18Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147523
.
Reference: [1] Bayer, A., Bertram, A., Macrì, E., Toda, Y.: Bridgeland stability conditions of threefolds II: An application to Fujita's conjecture.J. Algebr. Geom. 23 (2014), 693-710. Zbl 1310.14026, MR 3263665, 10.1090/S1056-3911-2014-00637-8
Reference: [2] Bayer, A., Macrì, E., Stellari, P.: The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds.Invent. Math. 206 (2016), 869-933. Zbl 1360.14057, MR 3573975, 10.1007/s00222-016-0665-5
Reference: [3] Bayer, A., Macrì, E., Toda, Y.: Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities.J. Algebr. Geom. 23 (2014), 117-163. Zbl 1306.14005, MR 3121850, 10.1090/S1056-3911-2013-00617-7
Reference: [4] Bridgeland, T.: Stability conditions on triangulated categories.Ann. of Math. (2) 166 (2007), 317-345. Zbl 1137.18008, MR 2373143, 10.4007/annals.2007.166.317
Reference: [5] Castelnuovo, G.: Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica.Palermo Rend. 7 (1893), 89-110 Italian \99999JFM99999 25.1035.02. 10.1007/BF03012436
Reference: [6] Gruson, L., Peskine, C.: Genre des courbes de l'espace projectif.Algebraic Geometry Proc., TromsøSymp. 1977, Lect. Notes Math. {\it 687}, (1978) 31-59 French. Zbl 0412.14011, MR 0527229, 10.1007/BFb0062927
Reference: [7] Halphen, G.: Mèmoire sur la classification des courbes gauches algèbriques.J. Ec. Polyt. 52 (1882), 1-200 French.
Reference: [8] Happel, D., Reiten, I., Smalø, S. O.: Tilting in abelian categories and quasitilted algebras.Mem. Am. Math. Soc. 575 120 (1996), 88 pages. Zbl 0849.16011, MR 1327209, 10.1090/memo/0575
Reference: [9] Harris, J.: The genus of space curves.Math. Ann. 249 (1980), 191-204. Zbl 0449.14006, MR 0579101, 10.1007/BF01363895
Reference: [10] Hartshorne, R.: On the classification of algebraic space curves II.Algebraic Geometry Proc. Summer Res. Inst., Brunswick/Maine 1985, part 1, Proc. Symp. Pure Math. 46 (1987), 145-164. Zbl 0449.14006, MR 0927954, 10.1090/pspum/046.1/927954
Reference: [11] Hartshorne, R., Hirschowitz, A.: Nouvelles courbes de bon genre dans l'espace projectif.Math. Ann. 280 (1988), 353-367 French. Zbl 0678.14007, MR 0936316, 10.1007/BF01456330
Reference: [12] Maciocia, A.: Computing the walls associated to Bridgeland stability conditions on projective surfaces.Asian J. Math. 18 (2014), 263-280. Zbl 1307.14022, MR 3217637, 10.4310/AJM.2014.v18.n2.a5
Reference: [13] Macrì, E.: A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space.Algebra Number Theory 8 (2014), 173-190. Zbl 1308.14016, MR 3207582, 10.2140/ant.2014.8.173
Reference: [14] Toda, Y.: Bogomolov-Gieseker-type inequality and counting invariants.J. Topol. 6 (2013), 217-250. Zbl 1328.14087, MR 3029426, 10.1112/jtopol/jts037
.

Files

Files Size Format View
CzechMathJ_68-2018-4_14.pdf 274.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo