Previous |  Up |  Next

Article

Title: The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives (English)
Author: Gadiyar, Gopalakrishna Hejmadi
Author: Padma, Ramanathan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1115-1124
Summary lang: English
.
Category: math
.
Summary: We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative. (English)
Keyword: discrete logarithm
Keyword: Hensel lift
Keyword: group extension
MSC: 11A07
MSC: 11T71
MSC: 11Y16
MSC: 14G50
MSC: 68Q25
MSC: 94A60
idZBL: Zbl 07031702
idMR: MR3881901
DOI: 10.21136/CMJ.2018.0128-17
.
Date available: 2018-12-07T06:24:18Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147526
.
Reference: [1] Bach, E.: Discrete Logarithms and Factoring.University of California, Computer Science Division, Berkeley (1984).
Reference: [2] Buium, A.: Arithmetic analogues of derivations.J. Algebra 198 (1997), 290-299. Zbl 0892.13008, MR 1482984, 10.1006/jabr.1997.7177
Reference: [3] Cameron, P. J., Preece, D. A.: Primitive Lambda-Roots.Available at\ https://cameroncounts.files.wordpress.com/2014/01/plr1.pdf (2014).
Reference: [4] Carmichael, R. D.: The Theory of Numbers.Wiley & Sons, New York (1914),\99999JFM99999 45.0283.10. MR 0105381
Reference: [5] Diffie, W., Hellman, M. E.: New directions in cryptography.IEEE Trans. Inf. Theory 22 (1976), 644-654. Zbl 0435.94018, MR 0437208, 10.1109/TIT.1976.1055638
Reference: [6] Goldwasser, S.: New directions in cryptography: twenty some years later (or cryptography and complexity theory: a match made in heaven).Proc. of the 38th Annual IEEE Symposium on Foundations of Computer Science, Foundations of Computer Science (1997), 314-324. 10.1109/SFCS.1997.646120
Reference: [7] Gadiyar, H. Gopalakrishna, Padma, R.: The discrete logarithm problem over prime fields can be transformed to a linear multivariable Chinese remainder theorem.Available at ArXiv: 1608.07032v1 [math.NT] (2016). MR 3881901
Reference: [8] Gadiyar, H. Gopalkrishna, Maini, K. M. S Sangeeta, Padma, R.: Cryptography, connections, cocycles and crystals: a $p$-adic exploration of the discrete logarithm problem.Progress in Cryptology---INDOCRYPT 2004, 5th International Conf. on Cryptology in India, Chennai, 2004, Lecture Notes in Comput. Sci. 3348 Springer, Berlin A. Canteaut et al. (2004), 305-314. Zbl 1115.94008, MR 2147933, 10.1007/978-3-540-30556-9_24
Reference: [9] Hilbert, D.: The Theory of Algebraic Number Fields.Springer, Berlin (1998). Zbl 0984.11001, MR 1646901, 10.1007/978-3-662-03545-0
Reference: [10] Kawada, Y.: On the derivations in number fields.Ann. Math. (2) 54 (1951), 302-314. Zbl 0044.26702, MR 0043830, 10.2307/1969531
Reference: [11] Koblitz, N.: A Course in Number Theory and Cryptography.Graduate Texts in Mathematics 114, Springer, New York (1994). Zbl 0819.11001, MR 1302169, 10.1007/978-1-4419-8592-7
Reference: [12] Kontsevich, M.: On poly(ana)logs. I. (With an appendix by Maxim Kontsevich: The $1\frac{1}{2}$-logarithm).Compositio Math. (2002), 130 161-210, 211-214. Zbl 1062.11042, MR 1884238, 10.1023/A:1013757217319
Reference: [13] Kumanduri, R., Romero, C.: Number Theory with Computer Applications.Prentice Hall, Upper Saddle River (1998). Zbl 0902.11001
Reference: [14] Lerch, M.: Zur Theorie des Fermatschen Quotienten $\frac{{a^{p-1}-1}}p=q(a)$.Math. Ann. 60 (1905), 471-490 German \99999JFM99999 36.0266.03. MR 1511321, 10.1007/BF01561092
Reference: [15] McCurley, K. S.: The discrete logarithm problem.Cryptology and Computational Number Theory Lect. Notes AMS Short Course 1989, Proc. Symp. Appl. Math. 42 (1990), 49-74. Zbl 0734.11073, MR 1095551, 10.1090/psapm/042/1095551
Reference: [16] Riesel, H.: Some soluble cases of the discrete logarithm problem.BIT 28 (1988), 839-851. Zbl 0665.10002, MR 0972809, 10.1007/BF01954904
Reference: [17] Robert, A. M.: A Course in $p$-adic Analysis.Graduate Texts in Mathematics 198, Springer, New York (2000). Zbl 0947.11035, MR 1760253, 10.1007/978-1-4757-3254-2
Reference: [18] Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves.Comment. Math. Univ. St. Pauli 47 (1998), 81-92. Zbl 1044.11592, MR 1624563
Reference: [19] Semaev, I. A.: Evaluation of discrete logarithms in a group of $p$-torsion points of an elliptic curve in characteristic $p$.Math. Comput. 67 (1998), 353-356. Zbl 1016.11021, MR 1432133, 10.1090/S0025-5718-98-00887-4
Reference: [20] Silverman, J. H.: Lifting and elliptic curve discrete logarithms.Selected Areas in Cryptography. Proc. of 15th International Workshop on Selected Areas in Cryptography, Sackville, 2008, Lecture Notes in Computer Science 5381 Springer, Berlin R. M. Avanzi et al. (2009), 82-102. Zbl 1256.94065, MR 2054769, 10.1007/978-3-642-04159-4_6
Reference: [21] Smart, N. P.: The discrete logarithm problem on elliptic curves of trace one.J. Cryptology 12 (1999), 193-196. Zbl 0963.11068, MR 1698180, 10.1007/s001459900052
Reference: [22] Teichmüller, O.: Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper.J. Reine Angew. Math. 176 (1936), 141-152 German. Zbl 0016.05103, MR 1581527, 10.1515/crll.1937.176.141
Reference: [23] Teichmüller, O.: Über die Struktur diskret bewerteter perfekter Körper.Nachr. Ges. Wiss. Göttingen, math.-phys. Kl., FG 1, Neue Folge 1 (1936), 151-161 German \99999JFM99999 62.0110.01.
Reference: [24] Washington, L. C.: Introduction to Cyclotomic Fields.Graduate Texts in Mathematics 83, Springer, New York (1997). Zbl 0966.11047, MR 1421575, 10.1007/978-1-4612-1934-7
.

Files

Files Size Format View
CzechMathJ_68-2018-4_17.pdf 271.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo