Previous |  Up |  Next

Article

Title: Region of interest contrast measures (English)
Author: Remeš, Václav
Author: Haindl, Michal
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 978-990
Summary lang: English
.
Category: math
.
Summary: A survey of local image contrast measures is presented and a new contrast measure for measuring the local contrast of regions of interest is proposed. The measures validation is based on the gradual objective contrast decreasing on medical test images in both grayscale and color. The performance of the eleven most frequented contrast measures is mutually compared and their robustness to different types of image degradation is analyzed. Since the contrast measures can be both global, regional and local pixelwise, a simple way of adapting the contrast measures for regions of interest is proposed. (English)
Keyword: contrast measures
Keyword: image enhancement
Keyword: enhancement quality measures
Keyword: medical image enhancement
MSC: 68U10
MSC: 94A08
idZBL: Zbl 07031755
idMR: MR3893131
DOI: 10.14736/kyb-2018-5-0978
.
Date available: 2018-12-14T08:11:07Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147538
.
Reference: [1] Agaian, S. S., Panetta, K., Grigoryan, A. M.: Transform-based image enhancement algorithms with performance measure..IEEE Trans. Image Process. 10 (2001), 3, 367-382. 10.1109/83.908502
Reference: [2] Agaian, S. S., Silver, B., Panetta, K. A.: Transform coefficient histogram-based image enhancement algorithms using contrast entropy..IEEE Trans. Image Process. 16 (2007), 3, 741-758. MR 2460190, 10.1109/tip.2006.888338
Reference: [3] Bhateja, V., Misra, M., Urooj, S.: Non-linear polynomial filters for edge enhancement of mammogram lesions..Comp. Meth. Programs Biomedicine 129 (2016), 125-134. 10.1016/j.cmpb.2016.01.007
Reference: [4] Burkhardt, D. A., Gottesman, J., Kersten, D., Legge, G. E.: Symmetry and constancy in the perception of negative and positive luminance contrast..JOSA A 1 (1984), 3, 309-316. 10.1364/josaa.1.000309
Reference: [5] Chang, C.-M., Laine, A.: Coherence of multiscale features for enhancement of digital mammograms..IEEE Trans. Inform. Technol. Biomedicine 3 (1999), 1, 32-46. 10.1109/4233.748974
Reference: [6] Dippel, S., Stahl, M., Wiemker, R., Blaffert, T.: Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform..IEEE Trans. Medical Imaging 21 (2002), 4, 343-353. 10.1109/tmi.2002.1000258
Reference: [7] Erdem, C. E., Sankur, B., Tekalp, A. M.: Performance measures for video object segmentation and tracking..IEEE Trans. Image Process. 13 (2004), 7, 937-951. 10.1109/tip.2004.828427
Reference: [8] Grim, J., Somol, P., Haindl, M., Daneš, J.: Computer-aided evaluation of screening mammograms based on local texture models..IEEE Trans. Image Process. 18 (2009), 4, 765-773. MR 2662215, 10.1109/tip.2008.2011168
Reference: [9] Haun, A., Peli, E.: Perceived contrast in complex images..J. Vision 13 (2013), 3, 2013. 10.1167/13.13.3
Reference: [10] King-Smith, P. E., Kulikowski, J.: Pattern and flicker detection analysed by subthreshold summation..J. Physiology 249 (1975), 3, 519. 10.1113/jphysiol.1975.sp011028
Reference: [11] Levine, M. D., Nazif, A. M.: Dynamic measurement of computer generated image segmentations..IEEE Trans. Pattern Analysis Machine Intell. 7 (1985), 155-164. 10.1109/tpami.1985.4767640
Reference: [12] Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., Caselli, F.: Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing..IEEE Trans Instrument. Measurement 57 (2008), 7, 1422-1430. 10.1109/tim.2007.915470
Reference: [13] Michelson, A. A.: Studies in Optics..University of Chicago Press, Chicago 1927.
Reference: [14] Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., Cardoso, J. S.: Inbreast: toward a full-field digital mammographic database..Academic Radiology 19 (2012), 2, 236-248. 10.1016/j.acra.2011.09.014
Reference: [15] Panetta, K., Zhou, Y., Agaian, S., Jia, H.: Nonlinear unsharp masking for mammogram enhancement..IEEE Trans. Inform. Technol. Biomedicine 15 (2011), 6, 918-928. 10.1109/titb.2011.2164259
Reference: [16] Peli, E.: Contrast in complex images..JOSA A 7 (1990), 10, 2032-2040. 10.1364/josaa.7.002032
Reference: [17] Qi, H., Diakides, N. A.: Thermal infrared imaging in early breast cancer detection - a survey of recent research..In: Proc. 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, IEEE 2003, pp. 1109-1112. 10.1109/iembs.2003.1279442
Reference: [18] Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A wavelet-based spatially adaptive method for mammographic contrast enhancement..Physics Medicine Biology 48 (2003), 6, 787. 10.1088/0031-9155/48/6/307
Reference: [19] Salvado, J., Roque, B.: Detection of calcifications in digital mammograms using wavelet analysis and contrast enhancement..In: IEEE International Workshop on Intelligent Signal Processing 2005, IEEE 2005, pp. 200-205. 10.1109/wisp.2005.1531658
Reference: [20] Simone, G., Pedersen, M., Hardeberg, J. Y.: Measuring perceptual contrast in digital images..J. Visual Commun. Image Representation 23 (2012), 3, 491-506. 10.1016/j.jvcir.2012.01.008
Reference: [21] Tadmor, Y., Tolhurst, D.: Calculating the contrasts that retinal ganglion cells and \{LGN\} neurones encounter in natural scenes..Vision Research 40 (2000), 22, 3145-3157. 10.1016/s0042-6989(00)00166-8
Reference: [22] Tang, J., Liu, X., Sun, Q.: A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms..IEEE J. Selected Topics Signal Process. 3 (2009), 1, 74-80. 10.1109/jstsp.2008.2011108
Reference: [23] Taylor, P., Champness, J., Given-Wilson, R., Johnston, K., Potts, H.: Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography..Health Technol. Assessment 9 (2005), 6. 10.3310/hta9060
Reference: [24] Thangavel, K., Karnan, M., Sivakumar, R., Mohideen, A.: Cad system for preprocessing and enhancement of digital mammograms..Graphics, Vision Image Process. xx (2007), 55-60.
Reference: [25] Tweed, T., Miguet, S.: Automatic detection of regions of interest in mammographies based on a combined analysis of texture and histogram..In: Proc. 16th International Conference on Pattern Recognition 2002, Vol. 2, Los Alamitos 2002. IEEE Computer Soc., pp. 448-452. 10.1109/icpr.2002.1048335
Reference: [26] Wang, H., Li, J.-B., Wu, L., Gao, H.: Mammography visual enhancement in cad-based breast cancer diagnosis..Clinical Imaging 37 (2013), 273-282. 10.1016/j.clinimag.2012.04.018
Reference: [27] Weber, E. H.: The Sense of Touch..Academic Press, 1978.
Reference: [28] Whittle, P.: Increments and decrements: Luminance discrimination..Vision Res. 26 (1986), 10, 1677-1691. 10.1016/0042-6989(86)90055-6
Reference: [29] Yan, Z., Zhang, Y., Liu, B., Zheng, J., Lu, L., Xie, Y., Liang, Z., Li, J.: Extracting hidden visual information from mammography images using conjugate image enhancement software..In: IEEE International Conference on Information Acquisition, IEEE Engineering in Medicine and Biology Society, 2005, pp. 4775-4778. 10.1109/icia.2005.1635092
.

Files

Files Size Format View
Kybernetika_54-2018-5_7.pdf 10.48Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo