Previous |  Up |  Next


complex network; pinning control; sliding mode; backstepping; trajectory tracking
In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.
[1] Barabási, A. L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999), 5439, 509-512. DOI 10.1126/science.286.5439.509 | MR 2091634 | Zbl 1226.05223
[2] Bhat, S. P., Bernstein, D. U.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 3, 751-766. DOI 10.1137/s0363012997321358 | MR 1756893 | Zbl 0945.34039
[3] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U.: Complex networks: Structure and dynamics. Phys. Rep. 424 (2006), 4, 175-308. DOI 10.1016/j.physrep.2005.10.009 | MR 2193621
[4] Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcation Chaos 9 (1999), 7, 1465-1466. DOI 10.1142/S0218127499001024 | MR 1729683 | Zbl 0962.37013
[5] Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics. John Wiley and Sons, Singapore 2014.
[6] Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326 DOI 10.1109/TCSI.2007.895383 | MR 2370589
[7] Drakunov, S., Izosimov, D., Lukyanov, A., Utkin, V. A., Utkin, V. I.: The block control principle. 1. Automat. Remote Control 51 (1990), 5, 601-608. MR 1071018
[8] Emelyanov, S. V.: Variable Structure Control Systems. Nouka, Moscow 1967. MR 0243850
[9] Erdos, P., Rényi, A.: On the evolution of random graphs. Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60. MR 0125031
[10] Hu, G., Qu, Z.: Controlling spatiotemporal chaos in coupled map lattice systems. Phys. Rev. Lett. 72 (1994), 1, 68. DOI 10.1103/physrevlett.72.68
[11] Guldner, J., Utkin, V. I.: Tracking the gradient of artificial potential fields: Sliding mode control for mobile robots. Int. J. Control 63 (1996), 3, 417-432. DOI 10.1080/00207179608921850 | MR 1650715
[12] Guldner, J., Utkin, V. I.: The chattering problem in sliding mode systems. In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000.
[13] Khalil, H. K.: Noninear Systems. Prentice-Hall, New Jersey 2002.
[14] Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dynamics 88 (2017), 4, 2637-2649. DOI 10.1007/s11071-017-3400-x | MR 3656544
[15] Krstic, M., Kanellakopoulos, I., Kokotovic, P. V.: Nonlinear and Adaptive Control Design. Wiley, 1995.
[16] Lee, H., Utkin, V. I.: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31 (2007), 2, 179-188. DOI 10.1016/j.arcontrol.2007.08.001
[17] Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390. DOI 10.1109/tcsi.2003.818611 | MR 2024565
[18] Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087. DOI 10.1109/tcsi.2004.835655 | MR 2096915
[19] Lorenz, E.: Deterministic nonperiodic flow. J. Atmospher. Sci. 20 (1963), 2, 130-141. DOI 10.1175/1520-0469(1963)020<0130:dnf>;2
[20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Modell. 35 (2011), 3080-3091. DOI 10.1016/j.apm.2010.12.020 | MR 2776263
[21] Roy, R., Murphy, T., Maier, T., Gills, Z., Hunt, E.: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68 (1992), 9, 1259-1262. DOI 10.1103/physrevlett.68.1259
[22] Sanchez, E. N., Rodriguez, D. I.: Inverse optimal pinning control for complex networks of chaotic systems. Int. Bifurcation Chaos 25, (2015), 02, 1550031. DOI 10.1142/s0218127415500315 | MR 3316325
[23] Sira-Ramírez, H.: Sliding Mode Control: The Delta-Sigma Modulation Approach. Birkhauser, Basel 2015. DOI 10.1007/978-3-319-17257-6 | MR 3362896
[24] Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dynamics 76 (2014), 1, 383-397. DOI 10.1007/s11071-013-1133-z | MR 3189178
[25] Su, H., Xiaofan, W.: Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning. Springer-Verlag, Berlin 2013. MR 3014429
[26] Utkin, V. I., Lee, H.: Chattering problem in sliding mode control systems. In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350. DOI 10.1109/vss.2006.1644542
[27] Utkin, V. I.: Sliding Modes and their Application in Variable Structure Systems. Mir Publishers, Moscow 1978. MR 0479534
[28] Utkin, V. I.: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 2013. MR 1295845 | Zbl 0748.93044
[29] Watts, D., Duncan, J., Strogatz, S.: Collective dynamics of 'small-world' networks. Nature 393 (1998), 6684, 440-442. DOI 10.1038/30918 | MR 1716136
[30] Wang, X., Cheng, G.: Pinning control of scale-free dynamical networks. Physica A: Statist. Mech. Appl. 310 (2002), 3, 521-531. DOI 10.1016/s0378-4371(02)00772-0 | MR 1946327
[31] Vaidyanathan, S., Sampath, S.: Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164. DOI 10.1007/978-3-642-24055-3\_16
[32] Yau, H.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons Fractals 22 (2004), 341-347. DOI 10.1016/j.chaos.2004.02.004 | MR 2060871
[33] Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45 (2009), 2, 429-435. DOI 10.1016/j.automatica.2008.07.016 | MR 2527339 | Zbl 1158.93308
[34] Zhang, M., Xu, M., Han, M.: Finite-time combination synchronization of uncertain complex networks by sliding mode control. Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411. DOI 10.1109/iccss.2017.8091448
Partner of
EuDML logo