Previous |  Up |  Next

Article

Title: Convergence and submeasures in Boolean algebras (English)
Author: Jech, Thomas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 4
Year: 2018
Pages: 503-511
Summary lang: English
.
Category: math
.
Summary: A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet. (English)
Keyword: Boolean algebra
Keyword: exhaustive submeasure
Keyword: sequential topology
Keyword: uniformly Fréchet topology
MSC: 03G05
MSC: 28A60
idZBL: Zbl 06997366
idMR: MR3914716
DOI: 10.14712/1213-7243.2015.262
.
Date available: 2018-12-28T15:13:53Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147554
.
Reference: [1] Balcar B., Główczyński W., Jech T.: The sequential topology on complete Boolean algebras.Fund. Math. 155 (1998), no. 1, 59–78. MR 1487988
Reference: [2] Balcar B., Franek F., Hruška J.: Exhaustive zero-convergence structures on Boolean algebras.Acta Univ. Carolin. Math. Phys. 40 (1999), no. 2, 27–41. MR 1751539
Reference: [3] Balcar B., Jech T., Pazák T.: Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann.Bull. London Math. Soc. 37 (2005), no. 6, 885–898. MR 2186722, 10.1112/S0024609305004807
Reference: [4] Balcar B., Jech T.: Weak distributivity, a problem of von Neumann and the mystery of measurability.Bull. Symbolic Logic 12 (2006), no. 2, 241–266. Zbl 1120.03028, MR 2223923, 10.2178/bsl/1146620061
Reference: [5] Balcar B., Jech T.: Contributions to the theory of weakly distributive complete Boolean algebras.Andrzej Mostowski and foundational studies, IOS, Amsterdam, 2008, pages 144–150. MR 2422684
Reference: [6] Fremlin D. H.: Measure Algebras.Handbook of Boolean Algebras, 3, North-Holland Publishing, Amsterdam, 1989. MR 0991611
Reference: [7] Gaifman H.: Concerning measures on Boolean algebras.Pacific J. Math. 14 (1964), 61–73. Zbl 0127.02306, MR 0161952, 10.2140/pjm.1964.14.61
Reference: [8] Horn A., Tarski A.: Measures in Boolean algebras.Trans. Amer. Math. Soc. 64 (1948), 467–497. Zbl 0035.03001, MR 0028922, 10.1090/S0002-9947-1948-0028922-8
Reference: [9] Jech T.: Non-provability of Souslin's hypothesis.Comment. Math. Univ. Carolinae 8 (1967), no. 2, 291–305. MR 0215729
Reference: [10] Jech T.: Algebraic characterizations of measure algebras.Proc. Amer. Math. Soc. 136 (2008), no. 4, 1285–1294. MR 2367102, 10.1090/S0002-9939-07-09184-8
Reference: [11] Jech T.: Measures on Boolean algebras.Fund. Math. 239 (2017), no. 2, 177–183. MR 3681586, 10.4064/fm352-1-2017
Reference: [12] Kalton N.: The Maharam Problem.Publ. Math. Univ. Pierre et Marie Curie, 94, Univ. Paris VI, Paris, 1989. MR 1107322
Reference: [13] Kalton N. J., Roberts J. W.: Uniformly exhaustive submeasures and nearly additive set functions.Trans. Amer. Math. Soc. 278 (1983), 803–816. MR 0701524, 10.1090/S0002-9947-1983-0701524-4
Reference: [14] Kantorovič L. V., Vulih B. Z., Pinsker A. G.: Functional Analysis in Partially Ordered Spaces.Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva, 1950 (Russian). MR 0038006
Reference: [15] Kelley J. L.: Measures on Boolean algebras.Pacific J. Math. 9 (1959), 1165–1177. MR 0108570, 10.2140/pjm.1959.9.1165
Reference: [16] Maharam D.: An algebraic characterization of measure algebras.Ann. of Math. (2) 48 (1947), 154–167. MR 0018718, 10.2307/1969222
Reference: [17] Mauldin D., ed.: The Scottish Book.Birkhäuser, Boston, 1981. MR 0666400
Reference: [18] Monk J. D., Bonnet R., eds.: Handbook of Boolean algebras,.North-Holland Publishing, Amsterdam, 1989. MR 0991601
Reference: [19] Solovay R. M., Tennenbaum S.: Iterated Cohen extensions and Souslin's problem.Ann. of Math. (2) 94 (1971), 201–245. MR 0294139, 10.2307/1970860
Reference: [20] Suslin M.: Problème 3.Fund. Math. 1 (1920), 223. 10.4064/fm-1-1-223-224
Reference: [21] Talagrand M.: A simple example of pathological submeasure.Math. Ann. 252 (1979/80), no. 2, 97–102. MR 0593624, 10.1007/BF01420116
Reference: [22] Talagrand M.: Maharam's problem.Ann. of Math. (2) 168 (2008), no. 3, 981–1009. Zbl 1185.28002, MR 2456888, 10.4007/annals.2008.168.981
Reference: [23] Tennenbaum S.: Souslin's problem.Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 60–63. MR 0224456, 10.1073/pnas.59.1.60
Reference: [24] Todorčević S.: A dichotomy for P-ideals of countable sets.Fund. Math. 166 (2000), no. 3, 251–267. MR 1809418
Reference: [25] Todorcevic S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures.Fund. Math. 183 (2004), no. 2, 169–183. Zbl 1071.28004, MR 2127965, 10.4064/fm183-2-7
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo