Previous |  Up |  Next

Article

Title: Improved convergence estimate for a multiply polynomially smoothed two-level method with an aggressive coarsening (English)
Author: Tezaur, Radek
Author: Vaněk, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 6
Year: 2018
Pages: 629-641
Summary lang: English
.
Category: math
.
Summary: A variational two-level method in the class of methods with an aggressive coarsening and a massive polynomial smoothing is proposed. The method is a modification of the method of Section 5 of Tezaur, Vaněk (2018). Compared to that method, a significantly sharper estimate is proved while requiring only slightly more computational work. (English)
Keyword: two-level method
Keyword: aggressive coarsening
Keyword: smoothed aggregation
Keyword: polynomial smoother
Keyword: convergence analysis
MSC: 65F10
MSC: 65M55
idZBL: Zbl 07031680
idMR: MR3893003
DOI: 10.21136/AM.2018.0314-17
.
Date available: 2019-01-03T09:09:46Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147561
.
Reference: [1] Brandt, A.: Algebraic multigrid theory: The symmetric case.Appl. Math. Comput. 19 (1986), 23-56. Zbl 0616.65037, MR 0849831, 10.1016/0096-3003(86)90095-0
Reference: [2] Brousek, J., Franková, P., Hanuš, M., Kopincová, H., Kužel, R., Tezaur, R., Vaněk, P., Vastl, Z.: An overview of multilevel methods with aggressive coarsening and massive polynomial smoothing.ETNA, Electron. Trans. Numer. Anal. 44 (2015), 401-442. Zbl 1327.65058, MR 3392685
Reference: [3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/S0168-2024(08)70174-7
Reference: [4] Hackbusch, W.: Multi-Grid Methods and Applications.Springer Series in Computational Mathematics 4, Springer, Berlin (1985). Zbl 0595.65106, MR 0814495, 10.1007/978-3-662-02427-0
Reference: [5] Tezaur, R., Vaněk, P.: Improved convergence bounds for two-level methods with an aggressive coarsening and massive polynomial smoothing.ETNA, Electron. Trans. Numer. Anal. 48 (2018), 264-285. Zbl 06932099, MR 3844102, 10.1553/etna_vol48s264
Reference: [6] Toselli, A., Widlund, O.: Domain Decomposition Methods---Algorithms and Theory.Springer Series in Computational Mathematics 34, Springer, Berlin (2005). Zbl 1069.65138, MR 2104179, 10.1007/b137868
Reference: [7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation.Numer. Math. 88 (2001), 559-579. Zbl 0992.65139, MR 1835471, 10.1007/s002110000226
Reference: [8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci. Comput. 21 (1999), 900-923. Zbl 0952.65099, MR 1755171, 10.1137/S1064827596297112
.

Files

Files Size Format View
AplMat_63-2018-6_3.pdf 343.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo