Previous |  Up |  Next

Article

Title: Polynomial chaos in evaluating failure probability: A comparative study (English)
Author: Janouchová, Eliška
Author: Sýkora, Jan
Author: Kučerová, Anna
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 6
Year: 2018
Pages: 713-737
Summary lang: English
.
Category: math
.
Summary: Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms. (English)
Keyword: uncertainty quantification
Keyword: reliability analysis
Keyword: probability of failure
Keyword: safety margin
Keyword: polynomial chaos expansion
Keyword: regression method
Keyword: stochastic collocation method
Keyword: stochastic Galerkin method
Keyword: Monte Carlo method
MSC: 41A10
MSC: 62P30
idZBL: Zbl 07031684
idMR: MR3893007
DOI: 10.21136/AM.2018.0335-17
.
Date available: 2019-01-03T09:13:07Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147565
.
Reference: [1] Augustin, F., Gilg, A., Paffrath, M., Rentrop, P., Villegas, M., Wever, U.: An accuracy comparison of polynomial chaos type methods for the propagation of uncertainties.J. Math. Ind. 3 (2013), 24 pages. Zbl 1275.65004, MR 3049138, 10.1186/2190-5983-3-2
Reference: [2] Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data.SIAM J. Numer. Anal. 45 (2007), 1005-1034. Zbl 1151.65008, MR 2318799, 10.1137/050645142
Reference: [3] Babuška, I., Tempone, R., Zouraris, G. E.: Galerkin finite element approximations of stochastic elliptic partial differential equations.SIAM J. Numer. Anal. 42 (2004), 800-825. Zbl 1080.65003, MR 2084236, 10.1137/S0036142902418680
Reference: [4] Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis.Probabilistic Engineering Mechanics 25 (2010), 183-197. 10.1016/j.probengmech.2009.10.003
Reference: [5] Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression.J. Comput. Phys. 230 (2011), 2345-2367. Zbl 1210.65019, MR 2764550, 10.1016/j.jcp.2010.12.021
Reference: [6] Cheng, H., Sandu, A.: Efficient uncertainty quantification with the polynomial chaos method for stiff systems.Math. Comput. Simul. 79 (2009), 3278-3295. Zbl 1169.65005, MR 2549773, 10.1016/j.matcom.2009.05.002
Reference: [7] Choi, S.-K., Grandhi, R. V., Canfield, R. A., Pettit, C. L.: Polynomial chaos expansion with latin hypercube sampling for estimating response variability.AIAA J. 42 (2004), 1191-1198. 10.2514/1.2220
Reference: [8] Ditlevsen, O., Madsen, H. O.: Structural Reliability Methods.John Wiley & Sons, Chichester (1996).
Reference: [9] Eigel, M., Gittelson, C. J., Schwab, C., Zander, E.: Adaptive stochastic Galerkin FEM.Comput. Methods Appl. Mech. Eng. 270 (2014), 247-269. Zbl 1296.65157, MR 3154028, 10.1016/j.cma.2013.11.015
Reference: [10] Eldred, M. S., Burkardt, J.: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification.The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando AIAA 2009-976 (2009), 20. 10.2514/6.2009-976
Reference: [11] Elman, H. C., Miller, C. W., Phipps, E. T., Tuminaro, R. S.: Assessment of collocation and Galerkin approaches to linear diffusion equations with random data.Int. J. Uncertain. Quantif. 1 (2011), 19-33. Zbl 1229.65026, MR 2823001, 10.1615/int.j.uncertaintyquantification.v1.i1.20
Reference: [12] Fülöp, A., Iványi, M.: Safety of a column in a frame.Probabilistic Assessment of Structures Using Monte Carlo Simulation: Background, Exercises and Software P. Marek et al. Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Praha, CD, Chapt. 8.10 (2003).
Reference: [13] Ghanem, R. G., Spanos, P. D.: Stochastic Finite Elements: A Spectral Approach, Revised Edition.Dover Civil and Mechanical Engineering, Dover Publications (2012). Zbl 0722.73080, MR 1083354, 10.1007/978-1-4612-3094-6
Reference: [14] Gutiérrez, M., Krenk, S.: Stochastic finite element methods.Encyclopedia of Computational Mechanics E. Stein et al. John Wiley & Sons, Chichester (2004). Zbl 1190.76001, MR 2288276, 10.1002/0470091355.ecm044
Reference: [15] Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids.J. Econom. 144 (2008), 62-80. Zbl 06592098, MR 2439922, 10.1016/j.jeconom.2007.12.004
Reference: [16] Hosder, S., Walters, R. W., Balch, M.: Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables.The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu AIAA 2007-1939 (2007), 16. 10.2514/6.2007-1939
Reference: [17] Hu, C., Youn, B. D.: Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems.Struct. Multidiscip. Optim. 43 (2011), 419-442. Zbl 1274.74271, MR 2774576, 10.1007/s00158-010-0568-9
Reference: [18] Janouchová, E., Kučerová, A.: Competitive comparison of optimal designs of experiments for sampling-based sensitivity analysis.Comput. Struct. 124 (2013), 47-60. 10.1016/j.compstruc.2013.04.009
Reference: [19] Janouchová, E., Kučerová, A., Sýkora, J.: Polynomial chaos construction for structural reliability analysis.Y. Tsompanakis et al. Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering Civil-Comp Press, Stirlingshire (2015), Paper 9. 10.4203/ccp.109.9
Reference: [20] Li, J., Li, J., Xiu, D.: An efficient surrogate-based method for computing rare failure probability.J. Comput. Phys. 230 (2011), 8683-8697. Zbl 1370.65005, MR 2845013, 10.1016/j.jcp.2011.08.008
Reference: [21] Li, J., Xiu, D.: Evaluation of failure probability via surrogate models.J. Comput. Phys. 229 (2010), 8966-8980. Zbl 1204.65010, MR 2725383, 10.1016/j.jcp.2010.08.022
Reference: [22] Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations.J. Comput. Phys. 228 (2009), 3084-3113. Zbl 1161.65006, MR 2509309, 10.1016/j.jcp.2009.01.006
Reference: [23] Matthies, H. G.: Uncertainty quantification with stochastic finite elements.Encyclopedia of Computational Mechanics E. Stein et al. John Wiley & Sons, Chichester (2007). Zbl 1190.76001, MR 2288276, 10.1002/0470091355.ecm071
Reference: [24] Matthies, H. G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations.Comput. Methods Appl. Mech. Eng. 194 (2005), 1295-1331. Zbl 1088.65002, MR 2121216, 10.1016/j.cma.2004.05.027
Reference: [25] Najm, H. N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics.Annual Review of Fluid Mechanics 41 S. H. Davis et al. Annual Reviews, Palo Alto (2009), 35-52. Zbl 1168.76041, MR 2512381, 10.1146/annurev.fluid.010908.165248
Reference: [26] Nobile, F., Tempone, R., Webster, C. G.: A sparse grid stochastic collocation method for partial differential equations with random input data.SIAM J. Numer. Anal. 46 (2008), 2309-2345. Zbl 1176.65137, MR 2421037, 10.1137/060663660
Reference: [27] Paffrath, M., Wever, U.: Adapted polynomial chaos expansion for failure detection.J. Comput. Phys. 226 (2007), 263-281. Zbl 1124.65011, MR 2356359, 10.1016/j.jcp.2007.04.011
Reference: [28] Pettersson, M. P., Iaccarino, G., Nordström, J.: Polynomial chaos methods.Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties Mathematical Engineering, Springer, Cham (2015), 23-29. Zbl 1325.76004, MR 3328389, 10.1007/978-3-319-10714-1_3
Reference: [29] Pulch, R.: Stochastic collocation and stochastic Galerkin methods for linear differential algebraic equations.J. Comput. Appl. Math. 262 (2014), 281-291. Zbl 1301.65090, MR 3162322, 10.1016/j.cam.2013.10.046
Reference: [30] Stefanou, G.: The stochastic finite element method: Past, present and future.Comput. Methods Appl. Mech. Eng. 198 (2009), 1031-1051. Zbl 1229.74140, 10.1016/j.cma.2008.11.007
Reference: [31] Wiener, N.: The homogeneous chaos.Am. J. Math. 60 (1938), 897-936. Zbl 0019.35406, MR 1507356, 10.2307/2371268
Reference: [32] Xiu, D.: Fast numerical methods for stochastic computations: A review.Commun. Comput. Phys. 5 (2009), 242-272. Zbl 1364.65019, MR 2513686
Reference: [33] Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach.Princeton University Press, Princeton (2010). Zbl 1210.65002, MR 2723020, 10.2307/j.ctv7h0skv
Reference: [34] Xiu, D., Hesthaven, J. S.: High-order collocation methods for differential equations with random inputs.SIAM J. Sci. Comput. 27 (2005), 1118-1139. Zbl 1091.65006, MR 2199923, 10.1137/040615201
.

Files

Files Size Format View
AplMat_63-2018-6_7.pdf 818.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo