Previous |  Up |  Next

Article

Title: Lepidoptera mathematica aneb rozličná zobecnění věty o motýlovi (Czech)
Title: Lepidoptera Mathematica, or the Varied Generalizations of the Butterfly Theorem (English)
Author: Štěpánová, Martina
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 63
Issue: 4
Year: 2018
Pages: 263-281
Summary lang: Czech
.
Category: math
.
Summary: Článek je věnován zobecněním tzv. věty o motýlovi, půvabného planimetrického tvrzení o tětivách dané kružnice. (Czech)
MSC: 51-02
.
Date available: 2019-01-29T13:24:31Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147584
.
Reference: [1] Bezverkhnyev, Y.: Haruki’s lemma and a related locus problem.. Forum Geom. 8 (2008), 63–72. MR 2429392
Reference: [2] Bogomolny, A.: Interactive mathematics miscellany and puzzles: William Wallace proof of the butterfly theorem. [online]. Dostupné z: https://www.cut-the-knot.org/pythagoras/WilliamWallaceButterfly.shtml
Reference: [3] Bogomolny, A.: Interactive mathematics miscellany and puzzles: The butterfly theorem. [online]. Dostupné z: https://www.cut-the-knot.org/pythagoras/Butterfly.shtml
Reference: [4] Bogomolny, A.: Interactive mathematics miscellany and puzzles: A better butterfly theorem. [online]. Dostupné z: http://www.cut-the-knot.org/pythagoras/BetterButterfly.shtml
Reference: [5] Celli, M.: A proof of the butterfly theorem using the similarity factor of the two wings.. Forum Geom. 16 (2016), 337–338. MR 3567316
Reference: [6] Coxeter, H. S. M., Greitzer, S. L.: Geometry revisited.. Mathematical Association of America, Washington, 1967. MR 3155265
Reference: [7] Craik, A. D. D., O’Connor, J. J.: Some unknown documents associated with William Wallace (1768–1843).. BSHM Bull. 26 (2011), 17–28. MR 2787219, 10.1080/17498430.2010.503555
Reference: [8] Čerin, Z.: A generalization of the butterfly theorem from circles to conics.. Math. Commun. 6 (2001), 161–164. MR 1908335
Reference: [9] Donaldo, C.: A proof of the butterfly theorem using Ceva’s theorem.. Forum Geom. 16 (2016), 185–186. MR 3499737
Reference: [10] Klamkin, M. S.: An extension of the butterfly problem.. Math. Mag. 38 (1965), 206–208. MR 1571542, 10.1080/0025570X.1965.11975634
Reference: [11] Kung, S.: A butterfly theorem for quadrilaterals.. Math. Mag. 78 (2005), 314–316. 10.1080/0025570X.2005.11953348
Reference: [12] Prasolov, V. V.: Problems in planimetry.. Nauka, Moscow, 1986.
Reference: [13] Shklyarsky, O., Chentsov, N. N., Yaglom, I. M.: Selected problems and theorems of elementary mathematics.. Moscow, 1952.
Reference: [14] Sledge, J.: A generalization of the butterfly theorem.. J. Undergraduate Math. 5 (1973), 3–4.
Reference: [15] Sliepčević, A.: A new generalization of the butterfly theorem.. J. Geom. Graph. 6 (2002), 61–68. MR 1953134
Reference: [16] Štěpánová, M.: Věta o motýlech.. In: Cesty k matematice III, Hromadová, J., Slavík, A. (eds.), MatfyzPress, Praha, 2018, 103–124.
Reference: [17] Trí, Trần Thúc Minh: Mathematics stack exchange: Generalized butterfly theorem. [online]. Dostupné z: https://math.stackexchange.com/questions/2640237/generalized-butterfly-theorem
Reference: [18] Volenec, V.: A generalization of the butterfly theorem.. Math. Commun. 5 (2000), 157–160. MR 1816270
Reference: [19] Volenec, V.: The butterfly theorem for conics.. Math. Commun. 7 (2002), 35–38. MR 1932541
.

Files

Files Size Format View
PokrokyMFA_63-2018-4_3.pdf 2.383Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo