Title:
|
Unique solvability and stability analysis of a generalized particle method for a Poisson equation in discrete Sobolev norms (English) |
Author:
|
Imoto, Yusuke |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
33-43 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Unique solvability and stability analysis is conducted for a generalized particle method for a Poisson equation with a source term given in divergence form. The generalized particle method is a numerical method for partial differential equations categorized into meshfree particle methods and generally indicates conventional particle methods such as smoothed particle hydrodynamics and moving particle semi-implicit methods. Unique solvability is derived for the generalized particle method for the Poisson equation by introducing a connectivity condition for particle distributions. Moreover, stability is obtained for the discretized Poisson equation by introducing discrete Sobolev norms and a semi-regularity condition of a family of discrete parameters. (English) |
Keyword:
|
generalized particle method |
Keyword:
|
Poisson equation |
Keyword:
|
unique solvability |
Keyword:
|
stability |
Keyword:
|
discrete Sobolev norm |
MSC:
|
65M12 |
MSC:
|
65N12 |
MSC:
|
65N75 |
idZBL:
|
Zbl 07031675 |
idMR:
|
MR3913882 |
DOI:
|
10.21136/AM.2019.0210-18 |
. |
Date available:
|
2019-02-08T10:01:31Z |
Last updated:
|
2021-03-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147593 |
. |
Reference:
|
[1] Moussa, B. Ben: On the convergence of SPH method for scalar conservation laws with boundary conditions.Methods Appl. Anal. 13 (2006), 29-61. Zbl 1202.65121, MR 2275871, 10.4310/MAA.2006.v13.n1.a3 |
Reference:
|
[2] Moussa, B. Ben, Vila, J. P.: Convergence of SPH method for scalar nonlinear conservation laws.SIAM J. Numer. Anal. 37 (2000), 863-887. Zbl 0949.65095, MR 1740385, 10.1137/S0036142996307119 |
Reference:
|
[3] Cummins, S. J., Rudman, M.: An SPH projection method.J. Comput. Phys. 152 (1999), 584-607. Zbl 0954.76074, MR 1699711, 10.1006/jcph.1999.6246 |
Reference:
|
[4] Gingold, R. A., Monaghan, J. J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars.Mon. Not. R. Astron. Soc. 181 (1977), 375-389. Zbl 0421.76032, 10.1093/mnras/181.3.375 |
Reference:
|
[5] Imoto, Y.: Error estimates of generalized particle methods for the Poisson and heat equations.Ph.D. Thesis, Kyushu University Institutional Repository, Fukuoka (2016). 10.15017/1654668 |
Reference:
|
[6] Imoto, Y., Tagami, D.: A truncation error estimate of the interpolant of a particle method based on the Voronoi decomposition.JSIAM Lett. 8 (2016), 29-32. MR 3509656, 10.14495/jsiaml.8.29 |
Reference:
|
[7] Imoto, Y., Tagami, D.: Truncation error estimates of approximate differential operators of a particle method based on the Voronoi decomposition.JSIAM Lett. 9 (2017), 69-72. MR 3720058, 10.14495/jsiaml.9.69 |
Reference:
|
[8] Ishijima, K., Kimura, M.: Truncation error analysis of finite difference formulae in meshfree particle methods.Trans. Japan Soc. Ind. Appl. Math. 20 (2010), 165-182 Japanese. 10.11540/jsiamt.20.3_165 |
Reference:
|
[9] Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid.Nuclear Sci. Eng. 123 (1996), 421-434. 10.13182/nse96-a24205 |
Reference:
|
[10] Lucy, L. B.: A numerical approach to the testing of the fission hypothesis.Astronom. J. 82 (1977), 1013-1024. 10.1086/112164 |
Reference:
|
[11] Raviart, P.-A.: An analysis of particle methods.Numerical Methods in Fluid Dynamics F. Brezzi et al. Lecture Notes in Math. 1127, Springer, Berlin (1985), 243-324. Zbl 0598.76003, MR 0802214, 10.1007/BFb0074532 |
Reference:
|
[12] Shao, S., Lo, E. Y. M.: Incompressible SPH method for simulating Newtonian and nonNewtonian flows with a free surface.Adv. Water Resources 26 (2003), 787-800. 10.1016/s0309-1708(03)00030-7 |
. |