Previous |  Up |  Next

Article

Title: Unique solvability and stability analysis of a generalized particle method for a Poisson equation in discrete Sobolev norms (English)
Author: Imoto, Yusuke
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 1
Year: 2019
Pages: 33-43
Summary lang: English
.
Category: math
.
Summary: Unique solvability and stability analysis is conducted for a generalized particle method for a Poisson equation with a source term given in divergence form. The generalized particle method is a numerical method for partial differential equations categorized into meshfree particle methods and generally indicates conventional particle methods such as smoothed particle hydrodynamics and moving particle semi-implicit methods. Unique solvability is derived for the generalized particle method for the Poisson equation by introducing a connectivity condition for particle distributions. Moreover, stability is obtained for the discretized Poisson equation by introducing discrete Sobolev norms and a semi-regularity condition of a family of discrete parameters. (English)
Keyword: generalized particle method
Keyword: Poisson equation
Keyword: unique solvability
Keyword: stability
Keyword: discrete Sobolev norm
MSC: 65M12
MSC: 65N12
MSC: 65N75
idZBL: Zbl 07031675
idMR: MR3913882
DOI: 10.21136/AM.2019.0210-18
.
Date available: 2019-02-08T10:01:31Z
Last updated: 2021-03-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147593
.
Reference: [1] Moussa, B. Ben: On the convergence of SPH method for scalar conservation laws with boundary conditions.Methods Appl. Anal. 13 (2006), 29-61. Zbl 1202.65121, MR 2275871, 10.4310/MAA.2006.v13.n1.a3
Reference: [2] Moussa, B. Ben, Vila, J. P.: Convergence of SPH method for scalar nonlinear conservation laws.SIAM J. Numer. Anal. 37 (2000), 863-887. Zbl 0949.65095, MR 1740385, 10.1137/S0036142996307119
Reference: [3] Cummins, S. J., Rudman, M.: An SPH projection method.J. Comput. Phys. 152 (1999), 584-607. Zbl 0954.76074, MR 1699711, 10.1006/jcph.1999.6246
Reference: [4] Gingold, R. A., Monaghan, J. J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars.Mon. Not. R. Astron. Soc. 181 (1977), 375-389. Zbl 0421.76032, 10.1093/mnras/181.3.375
Reference: [5] Imoto, Y.: Error estimates of generalized particle methods for the Poisson and heat equations.Ph.D. Thesis, Kyushu University Institutional Repository, Fukuoka (2016). 10.15017/1654668
Reference: [6] Imoto, Y., Tagami, D.: A truncation error estimate of the interpolant of a particle method based on the Voronoi decomposition.JSIAM Lett. 8 (2016), 29-32. MR 3509656, 10.14495/jsiaml.8.29
Reference: [7] Imoto, Y., Tagami, D.: Truncation error estimates of approximate differential operators of a particle method based on the Voronoi decomposition.JSIAM Lett. 9 (2017), 69-72. MR 3720058, 10.14495/jsiaml.9.69
Reference: [8] Ishijima, K., Kimura, M.: Truncation error analysis of finite difference formulae in meshfree particle methods.Trans. Japan Soc. Ind. Appl. Math. 20 (2010), 165-182 Japanese. 10.11540/jsiamt.20.3_165
Reference: [9] Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid.Nuclear Sci. Eng. 123 (1996), 421-434. 10.13182/nse96-a24205
Reference: [10] Lucy, L. B.: A numerical approach to the testing of the fission hypothesis.Astronom. J. 82 (1977), 1013-1024. 10.1086/112164
Reference: [11] Raviart, P.-A.: An analysis of particle methods.Numerical Methods in Fluid Dynamics F. Brezzi et al. Lecture Notes in Math. 1127, Springer, Berlin (1985), 243-324. Zbl 0598.76003, MR 0802214, 10.1007/BFb0074532
Reference: [12] Shao, S., Lo, E. Y. M.: Incompressible SPH method for simulating Newtonian and nonNewtonian flows with a free surface.Adv. Water Resources 26 (2003), 787-800. 10.1016/s0309-1708(03)00030-7
.

Files

Files Size Format View
AplMat_64-2019-1_2.pdf 299.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo