Previous |  Up |  Next

Article

Title: On the negative dependence in Hilbert spaces with applications (English)
Author: Hien, Nguyen Thi Thanh
Author: Thanh, Le Van
Author: Van, Vo Thi Hong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 1
Year: 2019
Pages: 45-59
Summary lang: English
.
Category: math
.
Summary: This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided. (English)
Keyword: negative dependence
Keyword: pairwise negative dependence
Keyword: Hilbert space
Keyword: law of large numbers
MSC: 60B11
MSC: 60B12
MSC: 60F15
idZBL: Zbl 07031676
idMR: MR3913883
DOI: 10.21136/AM.2018.0060-18
.
Date available: 2019-02-08T10:01:58Z
Last updated: 2021-03-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147594
.
Reference: [1] Block, H. W., Savits, T. H., Shaked, M.: Some concepts of negative dependence.Ann. Probab. 10 (1982), 765-772. Zbl 0501.62037, MR 0659545, 10.1214/aop/1176993784
Reference: [2] Borcea, J., Brändén, P., Liggett, T. M.: Negative dependence and the geometry of polynomials.J. Am. Math. Soc. 22 (2009), 521-567. Zbl 1206.62096, MR 2476782, 10.1090/S0894-0347-08-00618-8
Reference: [3] Burton, R. M., Dabrowski, A. R., Dehling, H.: An invariance principle for weakly associated random vectors.Ann. Probab. 9 (1981), 671-675. Zbl 0465.60009, MR 0876052, 10.1214/aop/1176994374
Reference: [4] Chen, P., Sung, S. H.: Complete convergence and strong laws of large numbers for weighted sums of negatively orthant dependent random variables.Acta Math. Hung. 148 (2016), 83-95. Zbl 1374.60040, MR 3439284, 10.1007/s10474-015-0559-9
Reference: [5] Csörgő, S., Tandori, K., Totik, V.: On the strong law of large numbers for pairwise independent random variables.Acta Math. Hung. 42 (1983), 319-330. Zbl 0534.60028, MR 0722846, 10.1007/BF01956779
Reference: [6] Dabrowski, A. R., Dehling, H.: A Berry-Esséen theorem and a functional law of the iterated logarithm for weakly associated random vectors.Stochastic Processes Appl. 30 (1988), 277-289. Zbl 0665.60027, MR 0978359, 10.1016/0304-4149(88)90089-0
Reference: [7] Ebrahimi, N., Ghosh, M.: Multivariate negative dependence.Commun. Stat., Theory Methods A10 (1981), 307-337. Zbl 0506.62034, MR 0612400, 10.1080/03610928108828041
Reference: [8] Etemadi, N.: An elementary proof of the strong law of large numbers.Z. Wahrscheinlichkeitstheor. Verw. Geb. 55 (1981), 119-122. Zbl 0438.60027, MR 0606010, 10.1007/BF01013465
Reference: [9] Hájek, J., Rényi, A.: Generalization of an inequality of Kolmogorov.Acta Math. Acad. Sci. Hung. 6 (1955), 281-283. Zbl 0067.10701, MR 0076207, 10.1007/BF02024392
Reference: [10] Hien, N. T. T., Thanh, L. V.: On the weak laws of large numbers for sums of negatively associated random vectors in Hilbert spaces.Stat. Probab. Lett. 107 (2015), 236-245. Zbl 1329.60029, MR 3412782, 10.1016/j.spl.2015.08.030
Reference: [11] Hu, T.-C., Sung, S. H., Volodin, A.: A note on the strong laws of large numbers for random variables.Acta Math. Hung. 150 (2016), 412-422. Zbl 06842519, MR 3568100, 10.1007/s10474-016-0650-x
Reference: [12] Huan, N. V., Quang, N. V., Thuan, N. T.: Baum-Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces.Acta Math. Hung. 144 (2014), 132-149. Zbl 1349.60046, MR 3267175, 10.1007/s10747-014-0424-2
Reference: [13] Ko, M.-H.: Hájek-Rényi inequality for $m$-asymptotically almost negatively associated random vectors in Hilbert space and applications.J. Inequal. Appl. (2018), Paper No. 80, 9 pages. MR 3797137, 10.1186/s13660-018-1671-5
Reference: [14] Ko, M.-H., Kim, T.-S., Han, K.-H.: A note on the almost sure convergence for dependent random variables in a Hilbert space.J. Theor. Probab. 22 (2009), 506-513. Zbl 1166.60021, MR 2501332, 10.1007/s10959-008-0144-z
Reference: [15] Lehmann, E. L.: Some concepts of dependence.Ann. Math. Stat. 37 (1966), 1137-1153. Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260
Reference: [16] Li, D., Rosalsky, A., Volodin, A. I.: On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables.Bull. Inst. Math., Acad. Sin. (N.S.) 1 (2006), 281-305. Zbl 1102.60026, MR 2230590
Reference: [17] Li, R., Yang, W.: Strong convergence of pairwise NQD random sequences.J. Math. Anal. Appl. 344 (2008), 741-747. Zbl 1141.60012, MR 2426304, 10.1016/j.jmaa.2008.02.053
Reference: [18] Matuł{a}, P.: A note on the almost sure convergence of sums of negatively dependent random variables.Stat. Probab. Lett. 15 (1992), 209-213. Zbl 0925.60024, MR 1190256, 10.1016/0167-7152(92)90191-7
Reference: [19] Miao, Y.: Hájek-Rényi inequality for dependent random variables in Hilbert space and applications.Rev. Unión Mat. Argent. 53 (2012), 101-112. Zbl 1255.60035, MR 2987160
Reference: [20] Móricz, F.: Strong limit theorems for blockwise $m$-dependent and blockwise quasi-orthogonal sequences of random variables.Proc. Am. Math. Soc. 101 (1987), 709-715. Zbl 0632.60025, MR 0911038, 10.2307/2046676
Reference: [21] Móricz, F., Su, K.-L., Taylor, R. L.: Strong laws of large numbers for arrays of orthogonal random elements in Banach spaces.Acta Math. Hung. 65 (1994), 1-16. Zbl 0806.60002, MR 1275656, 10.1007/BF01874465
Reference: [22] Móricz, F., Taylor, R. L.: Strong laws of large numbers for arrays of orthogonal random variables.Math. Nachr. 141 (1989), 145-152. Zbl 0674.60006, MR 1014423, 10.1002/mana.19891410116
Reference: [23] Patterson, R. F., Taylor, R. L.: Strong laws of large numbers for negatively dependent random elements.Nonlinear Anal., Theory Methods Appl. 30 (1997), 4229-4235. Zbl 0901.60016, MR 1603567, 10.1016/S0362-546X(97)00279-4
Reference: [24] Pemantle, R.: Towards a theory of negative dependence.J. Math. Phys. 41 (2000), 1371-1390. Zbl 1052.62518, MR 1757964, 10.1063/1.533200
Reference: [25] Rosalsky, A., Thanh, L. V.: On the strong law of large numbers for sequences of blockwise independent and blockwise $p$-orthogonal random elements in Rademacher type $p$ Banach spaces.Probab. Math. Stat. 27 (2007), 205-222. Zbl 1148.60018, MR 2445993
Reference: [26] Rosalsky, A., Thanh, L. V.: Some strong laws of large numbers for blockwise martingale difference sequences in martingale type $p$ Banach spaces.Acta Math. Sin., Engl. Ser. 28 (2012), 1385-1400. Zbl 1271.60012, MR 2928485, 10.1007/s10114-012-0378-7
Reference: [27] Thanh, L. V.: On the almost sure convergence for dependent random vectors in Hilbert spaces.Acta Math. Hung. 139 (2013), 276-285. Zbl 1299.60042, MR 3044151, 10.1007/s10474-012-0275-7
Reference: [28] Wu, Y., Rosalsky, A.: Strong convergence for $m$-pairwise negatively quadrant dependent random variables.Glas. Mat., III. Ser. 50 (2015), 245-259. Zbl 1323.60053, MR 3361275, 10.3336/gm.50.1.15
Reference: [29] Zhang, L.-X.: Strassen's law of the iterated logarithm for negatively associated random vectors.Stochastic Processes Appl. 95 (2001), 311-328. Zbl 1059.60042, MR 1854030, 10.1016/S0304-4149(01)00107-7
.

Files

Files Size Format View
AplMat_64-2019-1_3.pdf 299.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo