Title:
|
On the negative dependence in Hilbert spaces with applications (English) |
Author:
|
Hien, Nguyen Thi Thanh |
Author:
|
Thanh, Le Van |
Author:
|
Van, Vo Thi Hong |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
45-59 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided. (English) |
Keyword:
|
negative dependence |
Keyword:
|
pairwise negative dependence |
Keyword:
|
Hilbert space |
Keyword:
|
law of large numbers |
MSC:
|
60B11 |
MSC:
|
60B12 |
MSC:
|
60F15 |
idZBL:
|
Zbl 07031676 |
idMR:
|
MR3913883 |
DOI:
|
10.21136/AM.2018.0060-18 |
. |
Date available:
|
2019-02-08T10:01:58Z |
Last updated:
|
2021-03-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147594 |
. |
Reference:
|
[1] Block, H. W., Savits, T. H., Shaked, M.: Some concepts of negative dependence.Ann. Probab. 10 (1982), 765-772. Zbl 0501.62037, MR 0659545, 10.1214/aop/1176993784 |
Reference:
|
[2] Borcea, J., Brändén, P., Liggett, T. M.: Negative dependence and the geometry of polynomials.J. Am. Math. Soc. 22 (2009), 521-567. Zbl 1206.62096, MR 2476782, 10.1090/S0894-0347-08-00618-8 |
Reference:
|
[3] Burton, R. M., Dabrowski, A. R., Dehling, H.: An invariance principle for weakly associated random vectors.Ann. Probab. 9 (1981), 671-675. Zbl 0465.60009, MR 0876052, 10.1214/aop/1176994374 |
Reference:
|
[4] Chen, P., Sung, S. H.: Complete convergence and strong laws of large numbers for weighted sums of negatively orthant dependent random variables.Acta Math. Hung. 148 (2016), 83-95. Zbl 1374.60040, MR 3439284, 10.1007/s10474-015-0559-9 |
Reference:
|
[5] Csörgő, S., Tandori, K., Totik, V.: On the strong law of large numbers for pairwise independent random variables.Acta Math. Hung. 42 (1983), 319-330. Zbl 0534.60028, MR 0722846, 10.1007/BF01956779 |
Reference:
|
[6] Dabrowski, A. R., Dehling, H.: A Berry-Esséen theorem and a functional law of the iterated logarithm for weakly associated random vectors.Stochastic Processes Appl. 30 (1988), 277-289. Zbl 0665.60027, MR 0978359, 10.1016/0304-4149(88)90089-0 |
Reference:
|
[7] Ebrahimi, N., Ghosh, M.: Multivariate negative dependence.Commun. Stat., Theory Methods A10 (1981), 307-337. Zbl 0506.62034, MR 0612400, 10.1080/03610928108828041 |
Reference:
|
[8] Etemadi, N.: An elementary proof of the strong law of large numbers.Z. Wahrscheinlichkeitstheor. Verw. Geb. 55 (1981), 119-122. Zbl 0438.60027, MR 0606010, 10.1007/BF01013465 |
Reference:
|
[9] Hájek, J., Rényi, A.: Generalization of an inequality of Kolmogorov.Acta Math. Acad. Sci. Hung. 6 (1955), 281-283. Zbl 0067.10701, MR 0076207, 10.1007/BF02024392 |
Reference:
|
[10] Hien, N. T. T., Thanh, L. V.: On the weak laws of large numbers for sums of negatively associated random vectors in Hilbert spaces.Stat. Probab. Lett. 107 (2015), 236-245. Zbl 1329.60029, MR 3412782, 10.1016/j.spl.2015.08.030 |
Reference:
|
[11] Hu, T.-C., Sung, S. H., Volodin, A.: A note on the strong laws of large numbers for random variables.Acta Math. Hung. 150 (2016), 412-422. Zbl 06842519, MR 3568100, 10.1007/s10474-016-0650-x |
Reference:
|
[12] Huan, N. V., Quang, N. V., Thuan, N. T.: Baum-Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces.Acta Math. Hung. 144 (2014), 132-149. Zbl 1349.60046, MR 3267175, 10.1007/s10747-014-0424-2 |
Reference:
|
[13] Ko, M.-H.: Hájek-Rényi inequality for $m$-asymptotically almost negatively associated random vectors in Hilbert space and applications.J. Inequal. Appl. (2018), Paper No. 80, 9 pages. MR 3797137, 10.1186/s13660-018-1671-5 |
Reference:
|
[14] Ko, M.-H., Kim, T.-S., Han, K.-H.: A note on the almost sure convergence for dependent random variables in a Hilbert space.J. Theor. Probab. 22 (2009), 506-513. Zbl 1166.60021, MR 2501332, 10.1007/s10959-008-0144-z |
Reference:
|
[15] Lehmann, E. L.: Some concepts of dependence.Ann. Math. Stat. 37 (1966), 1137-1153. Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260 |
Reference:
|
[16] Li, D., Rosalsky, A., Volodin, A. I.: On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables.Bull. Inst. Math., Acad. Sin. (N.S.) 1 (2006), 281-305. Zbl 1102.60026, MR 2230590 |
Reference:
|
[17] Li, R., Yang, W.: Strong convergence of pairwise NQD random sequences.J. Math. Anal. Appl. 344 (2008), 741-747. Zbl 1141.60012, MR 2426304, 10.1016/j.jmaa.2008.02.053 |
Reference:
|
[18] Matuł{a}, P.: A note on the almost sure convergence of sums of negatively dependent random variables.Stat. Probab. Lett. 15 (1992), 209-213. Zbl 0925.60024, MR 1190256, 10.1016/0167-7152(92)90191-7 |
Reference:
|
[19] Miao, Y.: Hájek-Rényi inequality for dependent random variables in Hilbert space and applications.Rev. Unión Mat. Argent. 53 (2012), 101-112. Zbl 1255.60035, MR 2987160 |
Reference:
|
[20] Móricz, F.: Strong limit theorems for blockwise $m$-dependent and blockwise quasi-orthogonal sequences of random variables.Proc. Am. Math. Soc. 101 (1987), 709-715. Zbl 0632.60025, MR 0911038, 10.2307/2046676 |
Reference:
|
[21] Móricz, F., Su, K.-L., Taylor, R. L.: Strong laws of large numbers for arrays of orthogonal random elements in Banach spaces.Acta Math. Hung. 65 (1994), 1-16. Zbl 0806.60002, MR 1275656, 10.1007/BF01874465 |
Reference:
|
[22] Móricz, F., Taylor, R. L.: Strong laws of large numbers for arrays of orthogonal random variables.Math. Nachr. 141 (1989), 145-152. Zbl 0674.60006, MR 1014423, 10.1002/mana.19891410116 |
Reference:
|
[23] Patterson, R. F., Taylor, R. L.: Strong laws of large numbers for negatively dependent random elements.Nonlinear Anal., Theory Methods Appl. 30 (1997), 4229-4235. Zbl 0901.60016, MR 1603567, 10.1016/S0362-546X(97)00279-4 |
Reference:
|
[24] Pemantle, R.: Towards a theory of negative dependence.J. Math. Phys. 41 (2000), 1371-1390. Zbl 1052.62518, MR 1757964, 10.1063/1.533200 |
Reference:
|
[25] Rosalsky, A., Thanh, L. V.: On the strong law of large numbers for sequences of blockwise independent and blockwise $p$-orthogonal random elements in Rademacher type $p$ Banach spaces.Probab. Math. Stat. 27 (2007), 205-222. Zbl 1148.60018, MR 2445993 |
Reference:
|
[26] Rosalsky, A., Thanh, L. V.: Some strong laws of large numbers for blockwise martingale difference sequences in martingale type $p$ Banach spaces.Acta Math. Sin., Engl. Ser. 28 (2012), 1385-1400. Zbl 1271.60012, MR 2928485, 10.1007/s10114-012-0378-7 |
Reference:
|
[27] Thanh, L. V.: On the almost sure convergence for dependent random vectors in Hilbert spaces.Acta Math. Hung. 139 (2013), 276-285. Zbl 1299.60042, MR 3044151, 10.1007/s10474-012-0275-7 |
Reference:
|
[28] Wu, Y., Rosalsky, A.: Strong convergence for $m$-pairwise negatively quadrant dependent random variables.Glas. Mat., III. Ser. 50 (2015), 245-259. Zbl 1323.60053, MR 3361275, 10.3336/gm.50.1.15 |
Reference:
|
[29] Zhang, L.-X.: Strassen's law of the iterated logarithm for negatively associated random vectors.Stochastic Processes Appl. 95 (2001), 311-328. Zbl 1059.60042, MR 1854030, 10.1016/S0304-4149(01)00107-7 |
. |